Display options
Share it on

Iran J Pharm Res. 2014;13(3):1019-28.

Comparative binding affinities of flavonoid phytochemicals with bovine serum albumin.

Iranian journal of pharmaceutical research : IJPR

Shuqing Liu, Chunmei Guo, Yimeng Guo, Hongshan Yu, Frederick Greenaway, Ming-Zhong Sun

Affiliations

  1. Department of Biochemistry, Dalian Medical University, Dalian,116044, China.
  2. Department of Biotechnology, Dalian Medical University, Dalian,116044, China.
  3. School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China.
  4. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA.

PMID: 25276204 PMCID: PMC4177624

Abstract

Dietary flavonoids show beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is poor, probably due to their interaction with serum albumins. In the current work, the binding interactions of eight related flavonoids, sharing a similar core structure, with bovine serum albumin (BSA) were investigated by fluorescence spectroscopy. The binding affinities of the flavonoids with BSA were in the order hesperetin (KA=5.59 × 10(5))> quercetin (4.94 × 10(5)) > naringenin (3.04 × 10(5)) > isoquercitrin (4.66 × 10(4)) > icariin (3.60 × 10(4)) > rutin (1.65 × 10(4)) > hesperidin (2.50 × 10(3)) > naringin (8.70 × 10(2)). The associations of specific structural components of the flavonoids with their binding properties to BSA were also explored and hydrophobicity, functional group substituents, steric hindrance effects and the spatial arrangements of substituents seem to be the key factors for the affinities of flavonoids towards BSA. The results from the current work contribute to a better understanding of the transport of flavonoids in plasma and helping predict their physiological functions based on their intrinsic structures.

Keywords: Binding capacity; Bovine serum albumin; Flavonoids; Function; Structure

References

  1. Anal Bioanal Chem. 2010 Jul;397(6):2211-9 - PubMed
  2. Biochim Biophys Acta. 2005 Jun 20;1724(1-2):215-24 - PubMed
  3. J Pharm Biomed Anal. 2010 Feb 5;51(3):768-73 - PubMed
  4. BMC Complement Altern Med. 2010 Jan 28;10:4 - PubMed
  5. Free Radic Biol Med. 2007 Jul 15;43(2):241-52 - PubMed
  6. Atherosclerosis. 2005 Jan;178(1):25-32 - PubMed
  7. Mol Nutr Food Res. 2006 Aug;50(8):705-13 - PubMed
  8. Mol Biol Rep. 2011 Nov;38(8):4921-9 - PubMed
  9. J Photochem Photobiol B. 2008 Jan 30;90(1):33-40 - PubMed
  10. Free Radic Biol Med. 2010 May 1;48(9):1162-72 - PubMed
  11. J Pharm Biomed Anal. 2011 Feb 20;54(3):607-9 - PubMed
  12. J Sci Food Agric. 2010 May;90(7):1238-44 - PubMed
  13. Biochem Biophys Res Commun. 2010 Jul 30;398(3):444-9 - PubMed
  14. Biochim Biophys Acta. 2005 Jan 18;1721(1-3):164-73 - PubMed
  15. Free Radic Biol Med. 2010 Aug 1;49(3):339-47 - PubMed
  16. J Agric Food Chem. 2008 Apr 9;56(7):2350-6 - PubMed
  17. Genes Nutr. 2009 Dec;4(4):227-42 - PubMed
  18. Biochem Biophys Res Commun. 2002 Dec 6;299(3):400-3 - PubMed
  19. J Agric Food Chem. 2005 Jan 12;53(1):158-63 - PubMed
  20. Free Radic Biol Med. 2008 Nov 1;45(9):1205-16 - PubMed
  21. J Inorg Biochem. 2011 Dec;105(12):1529-37 - PubMed
  22. Nanomedicine. 2011 Dec;7(6):850-8 - PubMed
  23. Molecules. 2010 Dec 09;15(12):9092-103 - PubMed
  24. Biochem Pharmacol. 2003 Feb 1;65(3):447-56 - PubMed
  25. Genes Nutr. 2006 Sep;1(3-4):161-76 - PubMed
  26. Nat Prod Rep. 2009 Aug;26(8):1001-43 - PubMed
  27. J Med Food. 2010 Feb;13(1):108-15 - PubMed
  28. J Agric Food Chem. 2009 Aug 12;57(15):6642-8 - PubMed
  29. J Food Sci. 2010 Jan-Feb;75(1):C28-35 - PubMed
  30. Anal Bioanal Chem. 2008 May;391(2):625-32 - PubMed
  31. Mol Nutr Food Res. 2010 Jul;54 Suppl 2:S253-60 - PubMed

Publication Types