Display options
Share it on

Cancer Epidemiol Biomarkers Prev. 2014 Nov;23(11):2462-70. doi: 10.1158/1055-9965.EPI-14-0462. Epub 2014 Aug 29.

The cytokinesis-blocked micronucleus assay as a strong predictor of lung cancer: extension of a lung cancer risk prediction model.

Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology

Randa A El-Zein, Mirtha S Lopez, Anthony M D'Amelio, Mei Liu, Reginald F Munden, David Christiani, Li Su, Paula Tejera-Alveraz, Rihong Zhai, Margaret R Spitz, Carol J Etzel

Affiliations

  1. Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas. [email protected].
  2. Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
  3. Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas. CORRONA, Inc., Southborough, Massachusetts.
  4. Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas. Houston Methodist, Houston, Texas.
  5. Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts.
  6. Dan L. Duncan Cancer Center, Houston, Texas.

PMID: 25172871 PMCID: PMC4487661 DOI: 10.1158/1055-9965.EPI-14-0462

Abstract

BACKGROUND: There is an urgent need to improve lung cancer outcome by identifying and validating markers of risk. We previously reported that the cytokinesis-blocked micronucleus assay (CBMN) is a strong predictor of lung cancer risk. Here, we validate our findings in an independent external lung cancer population and test discriminatory power improvement of the Spitz risk prediction model upon extension with this biomarker.

METHODS: A total of 1,506 participants were stratified into a test set of 995 (527 cases/468 controls) from MD Anderson Cancer Center (Houston, TX) and a validation set of 511 (239 cases/272 controls) from Massachusetts General Hospital (Boston, MA). An epidemiologic questionnaire was administered and genetic instability was assessed using the CBMN assay.

RESULTS: Excellent concordance was observed between the two populations in levels and distribution of CBMN endpoints [binucleated-micronuclei (BN-MN), binucleated-nucleoplasmic bridges (BN-NPB)] with significantly higher mean BN-MN and BN-NPB values among cases (P < 0.0001). Extension of the Spitz model led to an overall improvement in the AUC (95% confidence intervals) from 0.61 (55.5-65.7) with epidemiologic variables to 0.92 (89.4-94.2) with addition of the BN-MN endpoint. The most dramatic improvement was observed with the never-smokers extended model followed by the former and current smokers.

CONCLUSIONS: The CBMN assay is a sensitive and specific predictor of lung cancer risk, and extension of the Spitz risk prediction model led to an AUC that may prove useful in population screening programs to identify the "true" high-risk individuals.

IMPACT: Identifying high-risk subgroups that would benefit from screening surveillance has immense public health significance.

©2014 American Association for Cancer Research.

References

  1. Cancer Prev Res (Phila). 2012 Jun;5(6):834-46 - PubMed
  2. J Natl Cancer Inst. 1989 Dec 20;81(24):1879-86 - PubMed
  3. Mutat Res. 2003 Jan 10;534(1-2):65-75 - PubMed
  4. Mutat Res. 1985 Feb-Apr;147(1-2):29-36 - PubMed
  5. Cytogenet Genome Res. 2004;104(1-4):376-82 - PubMed
  6. Cancer Res. 1992 May 1;52(9 Suppl):2694s-2697s - PubMed
  7. Mutagenesis. 2000 May;15(3):261-9 - PubMed
  8. Mutat Res. 2010 Jul-Sep;705(1):11-9 - PubMed
  9. Cancer Epidemiol Biomarkers Prev. 2013 Jan;22(1):135-45 - PubMed
  10. Nature. 2012 Jan 18;482(7383):53-8 - PubMed
  11. J Surg Oncol. 2013 Oct;108(5):304-11 - PubMed
  12. Cancer Prev Res (Phila). 2010 May;3(5):664-9 - PubMed
  13. Toxicology. 2002 Dec 27;181-182:411-6 - PubMed
  14. Br J Cancer. 2008 Jan 29;98(2):270-6 - PubMed
  15. N Engl J Med. 2011 Aug 4;365(5):395-409 - PubMed
  16. Cancer Prev Res (Phila). 2008 Sep;1(4):250-4 - PubMed
  17. J Natl Cancer Inst. 2011 Jul 6;103(13):1058-68 - PubMed
  18. J Natl Cancer Inst. 2003 Mar 19;95(6):470-8 - PubMed
  19. J Natl Cancer Inst. 2009 Dec 16;101(24):1731-2; author reply 1732 - PubMed
  20. Cancer Res. 2000 Mar 15;60(6):1619-25 - PubMed
  21. Mutat Res. 2000 Nov 20;455(1-2):81-95 - PubMed
  22. Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 - PubMed
  23. J Natl Cancer Inst. 2007 May 2;99(9):715-26 - PubMed
  24. Nat Med. 2012 Nov;18(11):1630-8 - PubMed
  25. J Epidemiol Community Health (1978). 1978 Dec;32(4):303-13 - PubMed
  26. J Natl Cancer Inst. 2009 Jul 1;101(13):959-63 - PubMed
  27. Cancer Res. 1999 Apr 1;59(7):1481-4 - PubMed
  28. Nat Genet. 2008 May;40(5):616-22 - PubMed
  29. Chem Res Toxicol. 2001 Jul;14(7):767-90 - PubMed
  30. Science. 1991 Nov 22;254(5035):1153-60 - PubMed
  31. Cell. 2011 Jan 7;144(1):27-40 - PubMed
  32. Br J Cancer. 2010 Jul 27;103(3):423-9 - PubMed
  33. Cancer Res. 2006 Jun 15;66(12):6449-56 - PubMed
  34. Environ Health Perspect. 2001 Jan;109(1):41-5 - PubMed
  35. Mutat Res. 1996 Sep;365(1-3):147-59 - PubMed
  36. Drug Discov Today. 2002 Nov 15;7(22):1128-37 - PubMed
  37. Nat Protoc. 2007;2(5):1084-104 - PubMed
  38. Cancer Epidemiol Biomarkers Prev. 2008 May;17(5):1111-9 - PubMed
  39. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5541-6 - PubMed
  40. Recent Results Cancer Res. 1998;154:177-84 - PubMed

MeSH terms

Publication Types

Grant support