Display options
Share it on

Appl Math (Irvine). 2014 May;4(5):91-97. doi: 10.4236/am.2013.45A011.

The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study.

Applied mathematics

Ata M Kiapour, Vikas Kaul, Ali Kiapour, Carmen E Quatman, Samuel C Wordeman, Timothy E Hewett, Constantine K Demetropoulos, Vijay K Goel

Affiliations

  1. Engineering Center for Orthopaedic Research Excellence (ECORE), University of Toledo, Toledo, USA ; Departments of Orthopaedics and Bioengineering, The University of Toledo, Toledo, USA.
  2. Sports Health and Performance Institute (SHPI), The Ohio State University, Columbus, USA.

PMID: 25221727 PMCID: PMC4160050 DOI: 10.4236/am.2013.45A011

Abstract

Finite element (FE) analysis has become an increasingly popular technique in the study of human joint biomechanics, as it allows for detailed analysis of the joint/tissue behavior under complex, clinically relevant loading conditions. A wide variety of modeling techniques have been utilized to model knee joint ligaments. However, the effect of a selected constitutive model to simulate the ligaments on knee kinematics remains unclear. The purpose of the current study was to determine the effect of two most common techniques utilized to model knee ligaments on joint kinematics under functional loading conditions. We hypothesized that anatomic representations of the knee ligaments with anisotropic hyperelastic properties will result in more realistic kinematics. A previously developed, extensively validated anatomic FE model of the knee developed from a healthy, young female athlete was used. FE models with 3D anatomic and simplified uniaxial representations of main knee ligaments were used to simulate four functional loading conditions. Model predictions of tibiofemoral joint kinematics were compared to experimental measures. Results demonstrated the ability of the anatomic representation of the knee ligaments (3D geometry along with anisotropic hyperelastic material) in more physiologic prediction of the human knee motion with strong correlation (

Keywords: Biomechanics; Constitutive Model; Finite Element; Knee

References

  1. J Biomech. 1996 Jul;29(7):955-61 - PubMed
  2. J Biomech Eng. 1999 Dec;121(6):657-62 - PubMed
  3. Clin Biomech (Bristol, Avon). 2005 May;20(4):434-42 - PubMed
  4. J Biomech Eng. 2009 Dec;131(12):121007 - PubMed
  5. J R Soc Interface. 2006 Feb 22;3(6):15-35 - PubMed
  6. J Biomech. 2004 Nov;37(11):1723-31 - PubMed
  7. J Orthop Res. 1994 Mar;12(2):176-85 - PubMed
  8. Med Eng Phys. 1998 Jun;20(4):276-90 - PubMed
  9. J Orthop Res. 1994 Sep;12(5):637-47 - PubMed
  10. J Biomech Eng. 1990 Feb;112(1):38-45 - PubMed
  11. J Biomech. 2005 Feb;38(2):197-208 - PubMed
  12. Dan Med Bull. 1994 Apr;41(2):119-38 - PubMed
  13. J Biomech. 2004 Mar;37(3):383-90 - PubMed
  14. J Biomech Eng. 1983 May;105(2):136-44 - PubMed
  15. J Biomech. 2007;40(5):1145-52 - PubMed
  16. Rheumatology (Oxford). 1999 Feb;38(2):124-32 - PubMed
  17. J Bone Joint Surg Am. 2002 Jun;84(6):907-14 - PubMed
  18. J Biomech. 2010 Dec 1;43(16):3118-25 - PubMed
  19. J Biomech. 1987;20(11-12):1055-61 - PubMed
  20. J Biomech. 2006;39(9):1686-701 - PubMed
  21. Clin Orthop Relat Res. 1975 Jan-Feb;(106):216-31 - PubMed
  22. J Biomech. 1989;22(2):95-107 - PubMed
  23. J Biomech Eng. 2006 Jun;128(3):399-408 - PubMed
  24. J Biomech. 1991;24(5):317-29 - PubMed
  25. Clin Biomech (Bristol, Avon). 1997 Apr;12(3):139-148 - PubMed
  26. J Biomech. 2004 Jul;37(7):1019-30 - PubMed
  27. Clin Orthop Relat Res. 2001 Oct;(391):266-74 - PubMed
  28. J Biomech Eng. 1998 Dec;120(6):757-63 - PubMed
  29. J Biomech. 1995 Apr;28(4):411-22 - PubMed
  30. J Biomech Eng. 2002 Jun;124(3):273-80 - PubMed

Publication Types

Grant support