Display options
Share it on

Front Microbiol. 2014 Aug 19;5:432. doi: 10.3389/fmicb.2014.00432. eCollection 2014.

Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens.

Frontiers in microbiology

Elena Dalla Vecchia, Paul P Shao, Elena Suvorova, Diego Chiappe, Romain Hamelin, Rizlan Bernier-Latmani

Affiliations

  1. Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland.
  2. Proteomics Core Facility, Core Facility PTECH, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland.

PMID: 25191310 PMCID: PMC4137172 DOI: 10.3389/fmicb.2014.00432

Abstract

Desulfotomaculum reducens strain MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing Fe(III). Metal reduction in Gram-positive bacteria is poorly understood. Here, we investigated Fe(III) reduction with lactate, a non-fermentable substrate, as the electron donor. Lactate consumption is concomitant to Fe(III) reduction, but does not support significant growth, suggesting that little energy can be conserved from this process and that it may occur fortuitously. D. reducens can reduce both soluble [Fe(III)-citrate] and insoluble (hydrous ferric oxide, HFO) Fe(III). Because physically inaccessible HFO was not reduced, we concluded that reduction requires direct contact under these experimental conditions. This implies the presence of a surface exposed reductase capable of transferring electrons from the cell to the extracellular electron acceptor. With the goal of characterizing the role of surface proteins in D. reducens and of identifying candidate Fe(III) reductases, we carried out an investigation of the surface proteome (surfaceome) of D. reducens. Cell surface exposed proteins were extracted by trypsin cell shaving or by lysozyme treatment, and analyzed by liquid chromatography-tandem mass spectrometry. This investigation revealed that the surfaceome fulfills many functions, including solute transport, protein export, maturation and hydrolysis, peptidoglycan synthesis and modification, and chemotaxis. Furthermore, a few redox-active proteins were identified. Among these, three are putatively involved in Fe(III) reduction, i.e., a membrane-bound hydrogenase 4Fe-4S cluster subunit (Dred_0462), a heterodisulfide reductase subunit A (Dred_0143) and a protein annotated as alkyl hydroperoxide reductase but likely functioning as a thiol-disulfide oxidoreductase (Dred_1533).

Keywords: Desulfotomaculum reducens; Fe(III) reduction; Gram-positive bacteria; cell-wall protein; extracellular electron transfer; membrane protein; surfaceome

References

  1. Microbiology (Reading). 2000 Feb;146 ( Pt 2):249-262 - PubMed
  2. Mol Microbiol. 1989 Dec;3(12):1825-31 - PubMed
  3. Microbiol Mol Biol Rev. 1999 Mar;63(1):174-229 - PubMed
  4. Mol Microbiol. 2007 Jul;65(1):1-11 - PubMed
  5. Appl Environ Microbiol. 1995 Jun;61(6):2132-8 - PubMed
  6. Appl Environ Microbiol. 1986 Apr;51(4):683-9 - PubMed
  7. Nature. 2005 Jun 23;435(7045):1098-101 - PubMed
  8. Nat Rev Microbiol. 2006 Oct;4(10):752-64 - PubMed
  9. Environ Microbiol Rep. 2011 Apr;3(2):211-7 - PubMed
  10. Nat Rev Microbiol. 2008 Apr;6(4):276-87 - PubMed
  11. Geobiology. 2014 Jan;12(1):48-61 - PubMed
  12. J Bacteriol. 2005 Nov;187(21):7471-80 - PubMed
  13. J Proteome Res. 2005 Mar-Apr;4(2):250-7 - PubMed
  14. Environ Microbiol Rep. 2009 Aug;1(4):220-7 - PubMed
  15. Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9 - PubMed
  16. Proteomics. 2011 Aug;11(15):3169-89 - PubMed
  17. J Proteome Res. 2009 Dec;8(12):5674-8 - PubMed
  18. Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11050-5 - PubMed
  19. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63 - PubMed
  20. Environ Sci Technol. 2010 Dec 15;44(24):9456-62 - PubMed
  21. Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):1929-35 - PubMed
  22. Arch Biochem Biophys. 2000 Jan 1;373(1):1-6 - PubMed
  23. Philos Trans R Soc Lond B Biol Sci. 2012 Apr 19;367(1592):1123-39 - PubMed
  24. Infect Immun. 2005 Aug;73(8):4853-63 - PubMed
  25. Nat Rev Microbiol. 2008 Aug;6(8):579-91 - PubMed
  26. Nat Protoc. 2009;4(4):484-94 - PubMed
  27. FEMS Microbiol Rev. 2003 Jun;27(2-3):427-47 - PubMed
  28. Trends Microbiol. 2002 May;10(5):238-45 - PubMed
  29. J Proteome Res. 2011 Apr 1;10(4):1794-805 - PubMed
  30. FEMS Microbiol Rev. 2012 Jan;36(1):131-48 - PubMed
  31. Microbiol Mol Biol Rev. 2006 Mar;70(1):192-221 - PubMed
  32. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1702-7 - PubMed
  33. EMBO Rep. 2002 Oct;3(10):938-43 - PubMed
  34. Nat Rev Mol Cell Biol. 2004 Dec;5(12):1024-37 - PubMed
  35. Nucleic Acids Res. 2011 Jan;39(Database issue):D241-4 - PubMed
  36. Mol Microbiol. 2007 Jul;65(1):12-20 - PubMed
  37. J Bacteriol. 2005 Mar;187(6):2127-37 - PubMed
  38. FEMS Microbiol Lett. 2006 Mar;256(1):1-15 - PubMed
  39. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 - PubMed
  40. Mol Microbiol. 2010 Jan;75(1):46-60 - PubMed
  41. J Mol Biol. 2001 Jan 19;305(3):567-80 - PubMed
  42. Nucleic Acids Res. 2010 Jan;38(Database issue):D492-6 - PubMed
  43. Infect Immun. 1977 Apr;16(1):20-5 - PubMed
  44. Front Microbiol. 2011 Apr 19;2:69 - PubMed
  45. J Mol Biol. 1999 Apr 2;287(3):695-715 - PubMed
  46. Nat Protoc. 2009;4(5):698-705 - PubMed
  47. BMC Bioinformatics. 2008 Mar 27;9:173 - PubMed
  48. FEMS Microbiol Rev. 2011 Jan;35(1):68-86 - PubMed
  49. Environ Microbiol. 2010 Oct;12(10):2738-54 - PubMed
  50. Mol Microbiol. 1994 Oct;14(1):115-21 - PubMed
  51. Zentralbl Bakteriol. 1993 Apr;278(2-3):187-96 - PubMed
  52. Environ Microbiol. 2009 May;11(5):1038-55 - PubMed
  53. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8209-14 - PubMed
  54. Biochim Biophys Acta. 2004 Nov 11;1694(1-3):149-61 - PubMed
  55. Microbiology (Reading). 2012 Aug;158(Pt 8):2144-2157 - PubMed

Publication Types