Display options
Share it on

Genet Mol Biol. 2014 Sep;37(3):518-25. doi: 10.1590/s1415-47572014000400007.

Alternative parameterizations of relatedness in whole genome association analysis of pre-weaning traits of Nelore-Angus calves.

Genetics and molecular biology

David G Riley, Clare A Gill, Andy D Herring, Penny K Riggs, Jason E Sawyer, James O Sanders

Affiliations

  1. Department of Animal Science , Texas A&M University , College Station, TX , USA .

PMID: 25249774 PMCID: PMC4171760 DOI: 10.1590/s1415-47572014000400007

Abstract

Gestation length, birth weight, and weaning weight of F2 Nelore-Angus calves (n = 737) with designed extensive full-sibling and half-sibling relatedness were evaluated for association with 34,957 SNP markers. In analyses of birth weight, random relatedness was modeled three ways: 1) none, 2) random animal, pedigree-based relationship matrix, or 3) random animal, genomic relationship matrix. Detected birth weight-SNP associations were 1,200, 735, and 31 for those parameterizations respectively; each additional model refinement removed associations that apparently were a result of the built-in stratification by relatedness. Subsequent analyses of gestation length and weaning weight modeled genomic relatedness; there were 40 and 26 trait-marker associations detected for those traits, respectively. Birth weight associations were on BTA14 except for a single marker on BTA5. Gestation length associations included 37 SNP on BTA21, 2 on BTA27 and one on BTA3. Weaning weight associations were on BTA14 except for a single marker on BTA10. Twenty-one SNP markers on BTA14 were detected in both birth and weaning weight analyses.

Keywords: Nelore; birth weight; gestation length; weaning weight; whole genome association

References

  1. Genet Sel Evol. 2002 Nov-Dec;34(6):657-78 - PubMed
  2. BMC Genet. 2010 Oct 13;11:93 - PubMed
  3. Genetica. 2009 Jun;136(2):351-8 - PubMed
  4. J Anim Sci. 2004 Dec;82(12):3405-14 - PubMed
  5. Int J Biol Sci. 2008;4(6):406-14 - PubMed
  6. Am J Hum Genet. 2005 May;76(5):887-93 - PubMed
  7. Genetica. 2009 Jun;136(2):237-43 - PubMed
  8. PLoS One. 2012;7(9):e44483 - PubMed
  9. J Anim Sci. 2008 Sep;86(9):2089-92 - PubMed
  10. Philos Trans R Soc Lond B Biol Sci. 2005 Jul 29;360(1459):1457-67 - PubMed
  11. PLoS Genet. 2006 Mar;2(3):e41 - PubMed
  12. Nat Genet. 2011 May;43(5):405-13 - PubMed
  13. Anim Genet. 2009 Dec;40(6):878-82 - PubMed
  14. J Anim Sci. 2012 May;90(5):1398-410 - PubMed
  15. Anim Genet. 2012 Dec;43(6):785-9 - PubMed
  16. Anim Genet. 2011 Dec;42(6):585-91 - PubMed
  17. BMC Genet. 2011 Jan 07;12:4 - PubMed
  18. J Anim Sci. 2010 Mar;88(3):837-48 - PubMed
  19. BMC Genomics. 2013 May 10;14:321 - PubMed
  20. Genet Sel Evol. 2013 Sep 03;45:32 - PubMed
  21. J Anim Breed Genet. 2013 Feb;130(1):20-31 - PubMed
  22. Anim Genet. 2012 Apr;43(2):216-9 - PubMed
  23. Anim Genet. 2009 Feb;40(1):27-34 - PubMed
  24. J Dairy Sci. 2010 Feb;93(2):743-52 - PubMed
  25. BMC Genet. 2013 Jun 13;14:52 - PubMed
  26. J Anim Sci. 2007 Apr;85(4):881-5 - PubMed
  27. Poult Sci. 2013 Jun;92(6):1486-91 - PubMed
  28. J Anim Sci. 2011 Aug;89(8):2297-309 - PubMed
  29. Genome Biol. 2009;10(4):R42 - PubMed
  30. J Anim Sci. 2012 Oct;90(10):3398-409 - PubMed
  31. J Anim Sci. 2013 Aug;91(8):3612-33 - PubMed
  32. Biometrics. 1999 Dec;55(4):997-1004 - PubMed
  33. Nature. 2007 Jun 7;447(7145):661-78 - PubMed
  34. J Hered. 2011 Jan-Feb;102(1):94-101 - PubMed
  35. J Anim Breed Genet. 2011 Dec;128(6):409-21 - PubMed
  36. PLoS One. 2011 May 12;6(5):e19416 - PubMed
  37. Nat Genet. 2006 Feb;38(2):203-8 - PubMed

Publication Types