Display options
Share it on

Front Hum Neurosci. 2014 Sep 11;8:715. doi: 10.3389/fnhum.2014.00715. eCollection 2014.

Using fMRI non-local means denoising to uncover activation in sub-cortical structures at 1.5 T for guided HARDI tractography.

Frontiers in human neuroscience

Michaël Bernier, Maxime Chamberland, Jean-Christophe Houde, Maxime Descoteaux, Kevin Whittingstall

Affiliations

  1. Department of Nuclear Medecine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke Sherbrooke, QC, Canada ; Department of Diagnostic Radiology, Faculty of Medicine and Health Science, University of Sherbrooke Sherbrooke, QC, Canada.
  2. Department of Nuclear Medecine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke Sherbrooke, QC, Canada.
  3. Computer Science Department, Faculty of Science, University of Sherbrooke Sherbrooke, QC, Canada.

PMID: 25309391 PMCID: PMC4160992 DOI: 10.3389/fnhum.2014.00715

Abstract

In recent years, there has been ever-increasing interest in combining functional magnetic resonance imaging (fMRI) and diffusion magnetic resonance imaging (dMRI) for better understanding the link between cortical activity and connectivity, respectively. However, it is challenging to detect and validate fMRI activity in key sub-cortical areas such as the thalamus, given that they are prone to susceptibility artifacts due to the partial volume effects (PVE) of surrounding tissues (GM/WM interface). This is especially true on relatively low-field clinical MR systems (e.g., 1.5 T). We propose to overcome this limitation by using a spatial denoising technique used in structural MRI and more recently in diffusion MRI called non-local means (NLM) denoising, which uses a patch-based approach to suppress the noise locally. To test this, we measured fMRI in 20 healthy subjects performing three block-based tasks : eyes-open closed (EOC) and left/right finger tapping (FTL, FTR). Overall, we found that NLM yielded more thalamic activity compared to traditional denoising methods. In order to validate our pipeline, we also investigated known structural connectivity going through the thalamus using HARDI tractography: the optic radiations, related to the EOC task, and the cortico-spinal tract (CST) for FTL and FTR. To do so, we reconstructed the tracts using functionally based thalamic and cortical ROIs to initiates seeds of tractography in a two-level coarse-to-fine fashion. We applied this method at the single subject level, which allowed us to see the structural connections underlying fMRI thalamic activity. In summary, we propose a new fMRI processing pipeline which uses a recent spatial denoising technique (NLM) to successfully detect sub-cortical activity which was validated using an advanced dMRI seeding strategy in single subjects at 1.5 T.

Keywords: HARDI; dMRI; denoising; fMRI; non-local means; seeding strategy; tractography

References

  1. J Neurosci Methods. 2012 Jan 15;203(1):264-72 - PubMed
  2. Neuroimage. 2014 May 1;91:77-83 - PubMed
  3. AJNR Am J Neuroradiol. 2011 Jan;32(1):3-13 - PubMed
  4. Neuroimage. 2006 Jul 15;31(4):1536-48 - PubMed
  5. Can J Neurol Sci. 2012 Nov;39(6):747-56 - PubMed
  6. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675-9 - PubMed
  7. IEEE Trans Med Imaging. 2009 Feb;28(2):269-86 - PubMed
  8. Magn Reson Med. 2000 Jul;44(1):162-7 - PubMed
  9. Front Neuroinform. 2014 Feb 21;8:8 - PubMed
  10. IEEE Eng Med Biol Mag. 2006 Mar-Apr;25(2):27-41 - PubMed
  11. Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):135-46 - PubMed
  12. Radiology. 1996 Dec;201(3):637-48 - PubMed
  13. Front Neurosci. 2013 Dec 17;7:247 - PubMed
  14. IEEE Trans Med Imaging. 2008 Apr;27(4):425-41 - PubMed
  15. Magn Reson Med. 1993 Aug;30(2):161-73 - PubMed
  16. Neuroimage. 1999 Mar;9(3):311-29 - PubMed
  17. Neuroimage. 2013 Jan 1;64:728-40 - PubMed
  18. J Cogn Neurosci. 2008 Oct;20(10):1903-14 - PubMed
  19. Neuroimage. 2003 Apr;18(4):813-26 - PubMed
  20. Front Neuroinform. 2014 May 30;8:59 - PubMed
  21. Neuroimage. 2007 Aug 1;37(1):90-101 - PubMed
  22. Biophys J. 1994 Jan;66(1):259-67 - PubMed
  23. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 - PubMed
  24. J Magn Reson Imaging. 2010 Jan;31(1):192-203 - PubMed
  25. J Magn Reson B. 1996 Jun;111(3):209-19 - PubMed
  26. Neuroimage. 2013 Oct 15;80:2-13 - PubMed
  27. PLoS Biol. 2008 Jul 1;6(7):e159 - PubMed
  28. Am J Physiol Imaging. 1992 Jul-Dec;7(3-4):136-45 - PubMed
  29. PLoS One. 2009 Aug 17;4(8):e6660 - PubMed
  30. Prog Neurobiol. 2008 Nov;86(3):141-55 - PubMed
  31. IEEE Trans Med Imaging. 2004 Mar;23(3):374-87 - PubMed
  32. Neuron. 2011 Jul 28;71(2):209-23 - PubMed
  33. Prog Brain Res. 2011;193:259-76 - PubMed
  34. Neuroimage. 2014 Feb 1;86:231-43 - PubMed
  35. Comput Biomed Res. 1996 Jun;29(3):162-73 - PubMed
  36. Hum Brain Mapp. 2014 Feb;35(2):683-97 - PubMed
  37. Magn Reson Med. 2001 Apr;45(4):595-604 - PubMed
  38. Neuroimage. 2013 Sep;78:353-62 - PubMed
  39. Neuroimage. 2004;23 Suppl 1:S208-19 - PubMed
  40. Trends Cogn Sci. 1999 Jun;3(6):207-216 - PubMed
  41. Neuroimage. 2014 Feb 1;86:67-80 - PubMed
  42. Magn Reson Med. 2004 Sep;52(3):559-65 - PubMed
  43. Neuroimage. 2000 Aug;12(2):196-208 - PubMed
  44. Neuroimage. 2003 Jul;19(3):1033-48 - PubMed
  45. Neuroimage. 2014 Nov 15;102 Pt 1:184-91 - PubMed
  46. Med Image Comput Comput Assist Interv. 2008;11(Pt 2):122-30 - PubMed
  47. Cortex. 2014 Jul;56:85-98 - PubMed
  48. Neuropsychologia. 1971 Mar;9(1):97-113 - PubMed
  49. Brain. 2011 Jul;134(Pt 7):1987-2004 - PubMed
  50. Neuroimage. 2013 Jan 1;64:240-56 - PubMed
  51. Int J Biomed Imaging. 2006;2006:12014 - PubMed
  52. Neuroimage. 2003 Aug;19(4):1349-60 - PubMed
  53. Med Image Comput Comput Assist Interv. 2008;11(Pt 2):171-9 - PubMed

Publication Types