Display options
Share it on

Ann Rehabil Med. 2014 Aug;38(4):494-505. doi: 10.5535/arm.2014.38.4.494. Epub 2014 Aug 28.

Evaluating the differential electrophysiological effects of the focal vibrator on the tendon and muscle belly in healthy people.

Annals of rehabilitation medicine

Gangpyo Lee, Yung Cho, Jaewon Beom, Changmook Chun, Choong Hyun Kim, Byung-Mo Oh

Affiliations

  1. Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
  2. Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea.

PMID: 25229028 PMCID: PMC4163589 DOI: 10.5535/arm.2014.38.4.494

Abstract

OBJECTIVE: To investigate the electrophysiological effects of focal vibration on the tendon and muscle belly in healthy people.

METHODS: The miniaturized focal vibrator consisted of an unbalanced mass rotating offset and wireless controller. The parameters of vibratory stimulation were adjusted on a flat rigid surface as 65 µm at 70 Hz. Two consecutive tests on the different vibration sites were conducted in 10 healthy volunteers (test 1, the Achilles tendon; test 2, the muscle belly on the medial head of the gastrocnemius). The Hoffman (H)-reflex was measured 7 times during each test. The minimal H-reflex latency, maximal amplitude of H-reflex (Hmax), and maximal amplitude of the M-response (Mmax) were acquired. The ratio of Hmax and Mmax (HMR) and the vibratory inhibition index (VII: the ratio of the Hmax after vibration and Hmax before vibration) were calculated. The changes in parameters according to the time and site of stimulation were analyzed using the generalized estimating equation methods.

RESULTS: All subjects completed the two tests without serious adverse effects. The minimal H-reflex latency did not show significant changes over time (Wald test: χ(2)=11.62, p=0.07), and between the two sites (χ(2)=0.42, p=0.52). The changes in Hmax (χ(2)=53.74, p<0.01), HMR (χ(2)=20.49, p<0.01), and VII (χ(2)=13.16, p=0.02) were significant over time with the adjustment of sites. These parameters were reduced at all time points compared to the baseline, but the decrements reverted instantly after the cessation of stimulation. When adjusted over time, a 1.99-mV decrease in the Hmax (χ(2)=4.02, p=0.04) and a 9.02% decrease in the VII (χ(2)=4.54, p=0.03) were observed when the muscle belly was vibrated compared to the tendon.

CONCLUSION: The differential electrophysiological effects of focal vibration were verified. The muscle belly may be the more effective site for reducing the H-reflex compared to the tendon. This study provides the neurophysiological basis for a selective and safe rehabilitation program for spasticity management with focal vibration.

Keywords: Electrophysiology; H-reflex; Monosynaptic reflex; Muscle spasticity; Vibration

References

  1. J Rehabil Med. 2012 Apr;44(4):325-30 - PubMed
  2. Exp Brain Res. 1996 Sep;111(2):208-14 - PubMed
  3. J Neurophysiol. 1986 Mar;55(3):551-68 - PubMed
  4. Brain Inj. 2009 Jul;23(7):623-31 - PubMed
  5. Muscle Nerve. 2007 Jul;36(1):21-9 - PubMed
  6. J Neurol. 1993 Feb;240(2):63-71 - PubMed
  7. Restor Neurol Neurosci. 2010;28(6):729-35 - PubMed
  8. Neurology. 2013 Jan 15;80(3 Suppl 2):S35-44 - PubMed
  9. J Neurol Sci. 2008 Dec 15;275(1-2):51-9 - PubMed
  10. J Physiol. 1976 May;257(1):199-227 - PubMed
  11. Stroke. 2012 Nov;43(11):3132-6 - PubMed
  12. J Theor Biol. 2004 Jul 21;229(2):263-80 - PubMed
  13. J Physiol. 1987 Apr;385:69-87 - PubMed
  14. Disabil Rehabil. 2005 Jan 7-21;27(1-2):33-68 - PubMed
  15. Arch Phys Med Rehabil. 1978 Dec;59(12):592-6 - PubMed
  16. Neurology. 2013 Jan 15;80(3 Suppl 2):S20-6 - PubMed
  17. Physiol Rev. 2012 Oct;92(4):1651-97 - PubMed
  18. Muscle Nerve. 2003 Aug;28(2):144-60 - PubMed
  19. Med Sci Sports Exerc. 2012 Aug;44(8):1409-18 - PubMed
  20. Arch Phys Med Rehabil. 2012 Sep;93(9):1656-61 - PubMed
  21. J Physiol. 2003 Sep 1;551(Pt 2):649-60 - PubMed
  22. J Anat. 2009 Jun;214(6):859-87 - PubMed
  23. Clin Rehabil. 2013 Jul;27(7):599-607 - PubMed
  24. Neurorehabil Neural Repair. 2011 Jan;25(1):61-70 - PubMed
  25. Neurology. 2013 Jan 15;80(3 Suppl 2):S13-9 - PubMed
  26. J Rehabil Med. 2006 Sep;38(5):302-8 - PubMed
  27. Neurorehabil Neural Repair. 2010 Mar-Apr;24(3):254-62 - PubMed
  28. Neurorehabil Neural Repair. 2011 Jan;25(1):48-60 - PubMed
  29. Brain Res. 1980 May;203(1):1-43 - PubMed
  30. Muscle Nerve. 1993 May;16(5):453-7 - PubMed
  31. Neurology. 2013 Jan 15;80(3 Suppl 2):S45-52 - PubMed
  32. J Neurol Sci. 1972 Mar;15(3):321-6 - PubMed
  33. Restor Neurol Neurosci. 2009;27(6):621-31 - PubMed
  34. Electromyogr Clin Neurophysiol. 2002 Apr-May;42(3):159-66 - PubMed
  35. Clin Neurophysiol. 2000 Apr;111(4):664-70 - PubMed
  36. Clin Exp Neurol. 1981;18:27-35 - PubMed
  37. J Physiol. 1978 Dec;285:197-207 - PubMed
  38. Arch Phys Med Rehabil. 2012 Feb;93(2):253-8 - PubMed
  39. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2053-6 - PubMed

Publication Types