Display options
Share it on

Front Plant Sci. 2014 Sep 03;5:447. doi: 10.3389/fpls.2014.00447. eCollection 2014.

The role of photosynthesis and amino acid metabolism in the energy status during seed development.

Frontiers in plant science

Gad Galili, Tamar Avin-Wittenberg, Ruthie Angelovici, Alisdair R Fernie

Affiliations

  1. Department of Plant Sciences, The Weizmann Institute of Science Rehovot, Israel.
  2. Max-Planck-Institut für Molekulare Pflanzenphysiologie Potsdam-Golm, Germany.
  3. Department of Biochemistry and Molecular Biology, Michigan State University East Lansing, MI, USA.

PMID: 25232362 PMCID: PMC4153028 DOI: 10.3389/fpls.2014.00447

Abstract

Seeds are the major organs responsible for the evolutionary upkeep of angiosperm plants. Seeds accumulate significant amounts of storage compounds used as nutrients and energy reserves during the initial stages of seed germination. The accumulation of storage compounds requires significant amounts of energy, the generation of which can be limited due to reduced penetration of oxygen and light particularly into the inner parts of seeds. In this review, we discuss the adjustment of seed metabolism to limited energy production resulting from the suboptimal penetration of oxygen into the seed tissues. We also discuss the role of photosynthesis during seed development and its contribution to the energy status of developing seeds. Finally, we describe the contribution of amino acid metabolism to the seed energy status, focusing on the Asp-family pathway that leads to the synthesis and catabolism of Lys, Thr, Met, and Ile.

Keywords: TCA cycle; branched chain amino acids; metabolism and bioenergetics; photosynthesis; seed development

References

  1. Plant Physiol. 2004 May;135(1):129-36 - PubMed
  2. Plant Physiol. 2003 Jul;132(3):1196-206 - PubMed
  3. Plant Physiol. 2003 Dec;133(4):2048-60 - PubMed
  4. Annu Rev Plant Biol. 2013;64:723-46 - PubMed
  5. Plant Physiol. 2008 Apr;146(4):1738-58 - PubMed
  6. Plant Physiol. 2008 May;147(1):316-30 - PubMed
  7. Annu Rev Plant Biol. 2013;64:189-217 - PubMed
  8. New Phytol. 2005 Sep;167(3):761-76 - PubMed
  9. Plant J. 2008 Sep;55(6):909-26 - PubMed
  10. Plant Physiol. 2008 Oct;148(2):908-25 - PubMed
  11. Plant Physiol. 2004 Jul;135(3):1809-21 - PubMed
  12. Curr Opin Plant Biol. 2004 Jun;7(3):309-17 - PubMed
  13. Plant Cell Physiol. 2013 Jan;54(1):107-18 - PubMed
  14. PLoS Genet. 2012;8(3):e1002612 - PubMed
  15. Plant Physiol. 2006 Nov;142(3):839-54 - PubMed
  16. New Phytol. 2011 Jan;189(1):148-59 - PubMed
  17. Trends Plant Sci. 2011 Sep;16(9):489-98 - PubMed
  18. Plant Physiol. 2014 May;165(1):92-104 - PubMed
  19. Plant Cell. 2010 May;22(5):1549-63 - PubMed
  20. Plant Cell. 2013 May;25(5):1625-40 - PubMed
  21. J Exp Bot. 2012 Sep;63(14):4995-5001 - PubMed
  22. Plant Cell. 2006 Dec;18(12):3564-75 - PubMed
  23. Plant Physiol. 2011 Mar;155(3):1435-44 - PubMed
  24. New Phytol. 2013 Nov;200(3):922-932 - PubMed
  25. New Phytol. 2012 Nov;196(3):926-936 - PubMed
  26. Plant Cell. 2013 Dec;25(12):4827-43 - PubMed
  27. Annu Rev Plant Biol. 2012;63:663-706 - PubMed
  28. Plant J. 2010 Feb;61(4):579-90 - PubMed
  29. Biosystems. 2011 Feb;103(2):302-8 - PubMed
  30. Plant J. 2006 Sep;47(5):751-60 - PubMed
  31. Annu Rev Plant Biol. 2005;56:253-79 - PubMed
  32. Plant Cell. 2005 Sep;17(9):2587-600 - PubMed
  33. Trends Plant Sci. 2010 Apr;15(4):211-8 - PubMed
  34. Nature. 2004 Dec 9;432(7018):779-82 - PubMed
  35. Plant Mol Biol. 1992 Oct;20(2):333-6 - PubMed
  36. Plant Cell. 2003 Apr;15(4):845-53 - PubMed
  37. Plant Physiol. 2004 Sep;136(1):2700-9 - PubMed
  38. Plant Physiol. 2013 Oct;163(2):637-47 - PubMed
  39. Plant Signal Behav. 2011 Feb;6(2):192-5 - PubMed
  40. J Exp Bot. 2011 Jul;62(11):3895-906 - PubMed
  41. Plant Physiol. 2009 Dec;151(4):2058-72 - PubMed

Publication Types