Display options
Share it on

Vet Med Int. 2014;2014:379010. doi: 10.1155/2014/379010. Epub 2014 Aug 13.

Detection of rift valley Fever virus interepidemic activity in some hotspot areas of kenya by sentinel animal surveillance, 2009-2012.

Veterinary medicine international

Jacqueline Kasiiti Lichoti, Absolomon Kihara, Abuu A Oriko, Leonard Ateya Okutoyi, James Ogaa Wauna, David P Tchouassi, Caroline C Tigoi, Steve Kemp, Rosemary Sang, Rees Murithi Mbabu

Affiliations

  1. Ministry of Agriculture Livestock and Fisheries, P.O. Box 00625, Nairobi, Kenya.
  2. International Livestock Research Institute, P.O. Box 30709-00100, Old Naivasha Road, Nairobi, Kenya.
  3. Kenya Agricultural Research Institute, Biotechnology Centre, P.O. Box 57811-00200, Waiyaki Way, Nairobi, Kenya.
  4. International Centre of Insect Physiology and Ecology, Human Health Division, P.O. Box 30772-00100, Nairobi, Kenya.
  5. International Centre of Insect Physiology and Ecology, Human Health Division, P.O. Box 30772-00100, Nairobi, Kenya ; Kenya Medical Research Institute, Centre for Virus Research, P.O. Box 54628-00200, Nairobi, Kenya.

PMID: 25202470 PMCID: PMC4147350 DOI: 10.1155/2014/379010

Abstract

Rift Valley fever virus causes an important zoonotic disease of humans and small ruminants in Eastern Africa and is spread primarily by a mosquito vector. In this region, it occurs as epizootics that typically occur at 5-15-year intervals associated with unusual rainfall events. It has hitherto been known that the virus is maintained between outbreaks in dormant eggs of the mosquito vector and this has formed the basis of understanding of the epidemiology and control strategies of the disease. We show here that seroconversion and sporadic acute disease do occur during the interepidemic periods (IEPs) in the absence of reported cases in livestock or humans. The finding indicates that previously undetected low-level virus transmission during the IEPs does occur and that epizootics may also be due to periodic expansion of mosquito vectors in the presence of both circulating virus and naïve animals.

References

  1. S Afr Med J. 1980 Nov 15;58(20):803-6 - PubMed
  2. Vet Microbiol. 2007 Apr 15;121(3-4):249-56 - PubMed
  3. Am J Trop Med Hyg. 1997 Mar;56(3):265-72 - PubMed
  4. Res Virol. 1989 Jan-Feb;140(1):67-77 - PubMed
  5. Am J Trop Med Hyg. 2010 Aug;83(2 Suppl):28-37 - PubMed
  6. Am J Trop Med Hyg. 2010 Aug;83(2 Suppl):58-64 - PubMed
  7. PLoS One. 2013 Jun 28;8(6):e66626 - PubMed
  8. Emerg Infect Dis. 2013 Jul;19(7):1177-9 - PubMed
  9. Tanzan J Health Res. 2011 Dec;13(5 Suppl 1):305-18 - PubMed
  10. Bull World Health Organ. 1979;57(3):441-3 - PubMed
  11. Anim Health Res Rev. 2006 Jun-Dec;7(1-2):71-9 - PubMed
  12. Emerg Infect Dis. 2013 Feb;19(2):246-53 - PubMed
  13. Rev Elev Med Vet Pays Trop. 1990;42(4):485-91 - PubMed
  14. J Virol Methods. 2003 Nov;113(2):103-12 - PubMed
  15. PLoS Negl Trop Dis. 2013;7(2):e2065 - PubMed
  16. PLoS One. 2013 Sep 30;8(9):e74192 - PubMed
  17. J Hyg (Lond). 1985 Aug;95(1):197-209 - PubMed
  18. Am J Trop Med Hyg. 1995 May;52(5):403-4 - PubMed
  19. J Virol. 2008 Nov;82(22):11152-66 - PubMed
  20. J Hyg (Lond). 1975 Oct;75(2):219-30 - PubMed
  21. Emerg Infect Dis. 2002 Feb;8(2):138-44 - PubMed
  22. J Clin Microbiol. 2007 Nov;45(11):3506-13 - PubMed
  23. J Virol Methods. 2005 Jul;127(1):10-8 - PubMed
  24. Trans R Soc Trop Med Hyg. 1980;74(6):815-6 - PubMed
  25. PLoS Negl Trop Dis. 2013 Aug 08;7(8):e2356 - PubMed
  26. BMC Infect Dis. 2010 Mar 11;10:65 - PubMed
  27. PLoS Negl Trop Dis. 2011 Dec;5(12):e1423 - PubMed
  28. Vet Rec. 1992 Mar 21;130(12):247-9 - PubMed
  29. J Infect Dis. 2011 Mar 1;203(5):655-65 - PubMed

Publication Types