Display options
Share it on

Genes Nutr. 2014 Nov;9(6):432. doi: 10.1007/s12263-014-0432-4. Epub 2014 Sep 27.

Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 h fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism.

Genes & nutrition

R M Elliott, B de Roos, S J Duthie, F G Bouwman, I Rubio-Aliaga, L K Crosley, C Mayer, A C Polley, C Heim, S L Coort, C T Evelo, F Mulholland, H Daniel, E C Mariman, I T Johnson

Affiliations

  1. Institute of Food Research, Colney Lane, Norwich, UK, [email protected].

PMID: 25260660 PMCID: PMC4176838 DOI: 10.1007/s12263-014-0432-4

Abstract

There is growing interest in the potential health benefits of diets that involve regular periods of fasting. While animal studies have provided compelling evidence that feeding patterns such as alternate-day fasting can increase longevity and reduce incidence of many chronic diseases, the evidence from human studies is much more limited and equivocal. Additionally, although several candidate processes have been proposed to contribute to the health benefits observed in animals, the precise molecular mechanisms responsible remain to be elucidated. The study described here examined the effects of an extended fast on gene transcript profiles in peripheral blood mononuclear cells from ten apparently healthy subjects, comparing transcript profiles after an overnight fast, sampled on four occasions at weekly intervals, with those observed on a single occasion after a further 24 h of fasting. Analysis of the overnight fasted data revealed marked inter-individual differences, some of which were associated with parameters such as gender and subject body mass. For example, a striking positive association between body mass index and the expression of genes regulated by type 1 interferon was observed. Relatively subtle changes were observed following the extended fast. Nonetheless, the pattern of changes was consistent with stimulation of fatty acid oxidation, alterations in cell cycling and apoptosis and decreased expression of key pro-inflammatory genes. Stimulation of fatty acid oxidation is an expected response, most likely in all tissues, to fasting. The other processes highlighted provide indications of potential mechanisms that could contribute to the putative beneficial effects of intermittent fasting in humans.

References

  1. Hepatology. 2013 Aug;58(2):603-16 - PubMed
  2. Cancer Lett. 2008 Sep 28;269(1):117-26 - PubMed
  3. J Appl Physiol (1985). 2005 Dec;99(6):2128-36 - PubMed
  4. Bull Exp Biol Med. 2010 Jul;149(1):50-3 - PubMed
  5. J Biol Chem. 2011 May 6;286(18):16332-43 - PubMed
  6. Genomics. 2004 Jun;83(6):980-8 - PubMed
  7. Nutr Metab (Lond). 2012 Oct 31;9(1):98 - PubMed
  8. Free Radic Biol Med. 2007 Mar 1;42(5):665-74 - PubMed
  9. J Proteome Res. 2008 Jun;7(6):2280-90 - PubMed
  10. Obes Res. 2005 Mar;13(3):574-81 - PubMed
  11. Am J Respir Cell Mol Biol. 2008 Mar;38(3):346-53 - PubMed
  12. Aging Cell. 2010 Feb;9(1):40-53 - PubMed
  13. Am J Clin Nutr. 2007 Nov;86(5):1515-23 - PubMed
  14. Am J Physiol Endocrinol Metab. 2013 Aug 15;305(4):E485-95 - PubMed
  15. Bioinformatics. 2012 Aug 15;28(16):2209-10 - PubMed
  16. Am J Clin Nutr. 2009 Nov;90(5):1244-51 - PubMed
  17. Exp Gerontol. 2013 Oct;48(10):1043-8 - PubMed
  18. Blood. 2010 Jan 28;115(4):792-803 - PubMed
  19. J Immunol. 2007 Jan 15;178(2):1122-35 - PubMed
  20. Cell Signal. 2010 Jul;22(7):1003-12 - PubMed
  21. Diabetes. 2003 Mar;52(3):657-62 - PubMed
  22. Trends Mol Med. 2007 Oct;13(10):422-32 - PubMed
  23. Mol Endocrinol. 2010 Apr;24(4):790-9 - PubMed
  24. Ann N Y Acad Sci. 2006 May;1067:294-300 - PubMed
  25. J Mol Histol. 2006 Sep;37(5-7):183-8 - PubMed
  26. Nat Protoc. 2009;4(1):44-57 - PubMed
  27. Ann Nutr Metab. 2007;51(1):88-95 - PubMed
  28. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1896-901 - PubMed
  29. Am J Clin Nutr. 2005 Jan;81(1):69-73 - PubMed
  30. Nutrition. 2013 Jan;29(1):207-12 - PubMed
  31. J Lab Clin Med. 2006 Mar;147(3):126-32 - PubMed
  32. Genes Nutr. 2008 Dec;3(3-4):143-6 - PubMed
  33. BMC Med Genomics. 2011 Mar 25;4:24 - PubMed
  34. Genes Nutr. 2008 Dec;3(3-4):147-51 - PubMed
  35. Nutr J. 2011 Oct 07;10:107 - PubMed
  36. Endocrinology. 1992 Jan;130(1):10-6 - PubMed
  37. Endocrinology. 2010 Jan;151(1):185-94 - PubMed
  38. BMC Immunol. 2005 Sep 21;6:22 - PubMed
  39. PLoS One. 2011;6(11):e27553 - PubMed
  40. Cancer Res. 2004 Oct 15;64(20):7412-9 - PubMed
  41. Physiol Genomics. 2005 Aug 11;22(3):402-11 - PubMed
  42. J Leukoc Biol. 2005 Mar;77(3):388-99 - PubMed
  43. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  44. PLoS One. 2011;6(8):e23634 - PubMed
  45. FEBS Lett. 2001 Dec 7;509(2):287-97 - PubMed
  46. Mech Ageing Dev. 2008 Mar;129(3):138-53 - PubMed
  47. Nutr Res. 2012 Dec;32(12):947-55 - PubMed
  48. BMC Genomics. 2010 Apr 07;11:226 - PubMed
  49. Biochem Biophys Res Commun. 2004 Jan 23;313(4):856-62 - PubMed
  50. Physiol Genomics. 2008 Jun 12;34(1):112-26 - PubMed
  51. Endocrinology. 1989 Jul;125(1):267-74 - PubMed
  52. Nutr J. 2012 Nov 21;11:98 - PubMed
  53. J Clin Invest. 2003 Dec;112(12):1796-808 - PubMed
  54. J Pharmacol Exp Ther. 2006 Oct;319(1):105-10 - PubMed

Publication Types

Grant support