Display options
Share it on

Front Microbiol. 2014 Sep 23;5:483. doi: 10.3389/fmicb.2014.00483. eCollection 2014.

Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis.

Frontiers in microbiology

Diana C Rosentul, Corine E Delsing, Martin Jaeger, Theo S Plantinga, Marije Oosting, Irene Costantini, Hanka Venselaar, Leo A B Joosten, Jos W M van der Meer, Bertrand Dupont, Bart-Jan Kullberg, Jack D Sobel, Mihai G Netea

Affiliations

  1. Department of Internal Medicine, Radboud University Medical Center Nijmegen, Netherlands ; Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Medical Center Nijmegen, Netherlands.
  2. Centre for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Science, Radboud University Medical Center Nijmegen, Netherlands.
  3. Hôpital Necker-Enfants Malades Paris, France.
  4. Department of Medicine, School of Medicine, Wayne State University Detroit, MI, USA ; Division of Infectious Diseases, Harper University Hospital Detroit, MI, USA.

PMID: 25295030 PMCID: PMC4172055 DOI: 10.3389/fmicb.2014.00483

Abstract

OBJECTIVE: Approximately 5% of women suffer from recurrent vulvovaginal candidiasis (RVVC). It has been hypothesized that genetic factors play an important role in the susceptibility to RVVC. The aim of this study was to assess the effect of genetic variants of genes encoding for pattern recognition receptors (PRRs) on susceptibility to RVVC.

STUDY DESIGN: For the study, 119 RVVC patients and 263 healthy controls were recruited. Prevalence of polymorphisms in five PRRs involved in recognition of Candida were investigated in patients and controls. In silico and functional studies were performed to assess their functional effects.

RESULTS: Single nucleotide polymorphisms (SNPs) in TLR1, TLR4, CLEC7A, and CARD9 did not affect the susceptibility to RVVC. In contrast, a non-synonymous polymorphism in TLR2 (rs5743704, Pro631His) increased the susceptibility to RVVC almost 3-fold. Furthermore, the TLR2 rs5743704 SNP had deleterious effects on protein function as assessed by in silico analysis, and in vitro functional assays suggested that it reduces production of IL-17 and IFNγ upon stimulation of peripheral blood mononuclear cells with Candida albicans. No effects were observed on serum mannose-binding lectin concentrations.

CONDENSATION: This study demonstrates the association of susceptibility to RVVC with genetic variation in TLR2, most likely caused by decreased induction of mucosal antifungal host defense.

CONCLUSION: Genetic variation in TLR2 may significantly enhance susceptibility to RVVC by modulating host defense mechanisms against Candida. Additional studies are warranted to assess systematically the role of host genetic variation for susceptibility to RVVC.

Keywords: RVVC; cytokines; genetic variation; pattern recognition receptors

References

  1. J Infect Dis. 2012 Mar 15;205(6):934-43 - PubMed
  2. Cell. 2007 Sep 21;130(6):1071-82 - PubMed
  3. Proc R Soc Med. 1977;70 Suppl 4:3-6 - PubMed
  4. J Infect Dis. 2011 Oct 1;204(7):1138-45 - PubMed
  5. Am J Obstet Gynecol. 1991 Oct;165(4 Pt 2):1168-76 - PubMed
  6. Clin Obstet Gynecol. 1993 Mar;36(1):153-65 - PubMed
  7. BMC Bioinformatics. 2010 Nov 08;11:548 - PubMed
  8. J Infect Dis. 2007 Nov 15;196(10):1565-71 - PubMed
  9. BMC Bioinformatics. 2006 Mar 22;7:166 - PubMed
  10. Genome Res. 2003 Sep;13(9):2129-41 - PubMed
  11. Nucleic Acids Res. 2003 Jul 1;31(13):3812-4 - PubMed
  12. Am J Obstet Gynecol. 1985 Aug 1;152(7 Pt 2):924-35 - PubMed
  13. Clin Infect Dis. 2009 Sep 1;49(5):724-32 - PubMed
  14. Trends Immunol. 2010 Sep;31(9):346-53 - PubMed
  15. Cell Microbiol. 2008 Oct;10(10):2058-66 - PubMed
  16. Biochem Biophys Res Commun. 2002 Nov 29;299(2):216-21 - PubMed
  17. Scand J Immunol. 2010 May;71(5):369-81 - PubMed
  18. Immunity. 2011 Mar 25;34(3):422-34 - PubMed
  19. Am J Obstet Gynecol. 1985 Aug 1;152(7 Pt 2):956-9 - PubMed
  20. PLoS Pathog. 2013;9(7):e1003486 - PubMed
  21. J Exp Med. 2003 May 5;197(9):1119-24 - PubMed
  22. Int J STD AIDS. 2002 Aug;13(8):522-39 - PubMed
  23. Arch Gynecol Obstet. 2012 Jan;285(1):149-53 - PubMed
  24. FEMS Immunol Med Microbiol. 2000 Oct;29(2):89-94 - PubMed
  25. Clin Infect Dis. 2003 Sep 1;37(5):733-7 - PubMed
  26. J Infect Dis. 2003 Jul 1;188(1):165-72 - PubMed
  27. Nucleic Acids Res. 2007;35(11):3823-35 - PubMed
  28. Proteins. 2002 May 15;47(3):393-402 - PubMed
  29. Nature. 2006 Aug 10;442(7103):651-6 - PubMed
  30. Clin Microbiol Rev. 1996 Jul;9(3):335-48 - PubMed
  31. Nat Methods. 2010 Apr;7(4):248-9 - PubMed
  32. N Engl J Med. 2011 Jul 7;365(1):54-61 - PubMed
  33. Lancet. 2007 Jun 9;369(9577):1961-71 - PubMed
  34. Proc R Soc Med. 1977;70 Suppl 4:1-2 - PubMed
  35. N Engl J Med. 2009 Oct 29;361(18):1727-35 - PubMed
  36. Clin Infect Dis. 2012 Feb 15;54(4):502-10 - PubMed
  37. Nat Rev Microbiol. 2008 Jan;6(1):67-78 - PubMed
  38. J Acquir Immune Defic Syndr. 2010 Sep;55(1):87-94 - PubMed
  39. J Exp Med. 2003 May 5;197(9):1107-17 - PubMed
  40. Lancet Infect Dis. 2005 Mar;5(3):156-64 - PubMed
  41. Clin Obstet Gynecol. 1981 Jun;24(2):407-38 - PubMed
  42. Clin Infect Dis. 2005 May 1;40(9):1258-62 - PubMed
  43. N Engl J Med. 2009 Oct 29;361(18):1760-7 - PubMed
  44. Hum Mutat. 2011 Jun;32(6):643-52 - PubMed
  45. J Immunol. 2004 Mar 15;172(6):3712-8 - PubMed
  46. Obstet Gynecol. 2000 Mar;95(3):413-6 - PubMed

Publication Types

Grant support