Display options
Share it on

Genomics Inform. 2014 Sep;12(3):80-6. doi: 10.5808/GI.2014.12.3.80. Epub 2014 Sep 30.

Foldback intercoil DNA and the mechanism of DNA transposition.

Genomics & informatics

Byung-Dong Kim

Affiliations

  1. Department of Plant Science, Seoul National University, Seoul 151-921, Korea. ; The Korean Academy of Science and Technology, Seongnam 463-808, Korea.

PMID: 25317106 PMCID: PMC4196379 DOI: 10.5808/GI.2014.12.3.80

Abstract

Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as 180° and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed.

Keywords: DNA end-joining repair; DNA transposable elements; foldback intercoil DNA; homologous recombination; retroelements; target site duplication

References

  1. Annu Rev Genomics Hum Genet. 2007;8:241-59 - PubMed
  2. Cell. 1993 Feb 26;72(4):595-605 - PubMed
  3. Annu Rev Genet. 1988;22:77-105 - PubMed
  4. Cell. 1991 May 31;65(5):805-16 - PubMed
  5. Genomics Inform. 2012 Dec;10(4):226-33 - PubMed
  6. Cell. 2009 Aug 21;138(4):685-95 - PubMed
  7. Annu Rev Biochem. 1992;61:1011-51 - PubMed
  8. Genomics Inform. 2014 Sep;12(3):87-97 - PubMed
  9. Curr Opin Struct Biol. 2004 Feb;14(1):50-7 - PubMed
  10. Cell. 1986 Nov 7;47(3):325-7 - PubMed
  11. Cell. 2009 Sep 18;138(6):1096-108 - PubMed
  12. Nature. 1953 Apr 25;171(4356):737-8 - PubMed
  13. Nat Rev Genet. 2007 Dec;8(12):973-82 - PubMed
  14. Plant Cell. 2003 Aug;15(8):1771-80 - PubMed
  15. Cell. 1985 Jul;41(3):781-91 - PubMed
  16. J Mol Biol. 2004 Jan 2;335(1):3-26 - PubMed
  17. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1933-7 - PubMed
  18. Cell. 1983 Nov;35(1):235-42 - PubMed
  19. Cell. 1989 Oct 20;59(2):385-94 - PubMed
  20. Science. 2004 Mar 12;303(5664):1626-32 - PubMed
  21. Nat Struct Mol Biol. 2006 Jul;13(7):655-60 - PubMed
  22. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3776-80 - PubMed
  23. Cell. 1985 Jul;41(3):867-76 - PubMed
  24. Cell. 1985 Jul;41(3):771-80 - PubMed
  25. Trends Genet. 2007 Apr;23(4):183-91 - PubMed
  26. Science. 1995 Oct 13;270(5234):253-4 - PubMed
  27. Annu Rev Biochem. 1985;54:863-96 - PubMed
  28. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4540-5 - PubMed
  29. Nature. 1983 Jul 21-27;304(5923):280-2 - PubMed

Publication Types