Display options
Share it on

J Immunother Cancer. 2014 Oct 14;2(1):36. doi: 10.1186/s40425-014-0036-y. eCollection 2014.

Tetramer guided, cell sorter assisted production of clinical grade autologous NY-ESO-1 specific CD8(+) T cells.

Journal for immunotherapy of cancer

Seth M Pollack, Robin L Jones, Erik A Farrar, Ivy P Lai, Sylvia M Lee, Jianhong Cao, Venu G Pillarisetty, Benjamin L Hoch, Ashley Gullett, Marie Bleakley, Ernest U Conrad, Janet F Eary, Kendall C Shibuya, Edus H Warren, Jason N Carstens, Shelly Heimfeld, Stanley R Riddell, Cassian Yee

Affiliations

  1. Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA.
  2. Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA.
  3. Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Institute for Advanced Study, Technical University of Munich, Munich, Germany.
  4. Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Surgery, University of Washington, Seattle, WA USA.
  5. Department of Pathology, University of Washington, Seattle, WA USA.
  6. Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Pediatrics, University of Washington, Seattle, WA USA.
  7. Department of Orthopedics, University of Washington, Seattle, WA USA.
  8. Department of Radiology, University of Alabama, Birmingham, AL USA.
  9. Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA ; Institute for Advanced Study, Technical University of Munich, Munich, Germany.
  10. Clinical Research Division, D3-100 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA ; Department of Medicine, University of Washington, Seattle, WA USA ; Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, 7455 Fannin St, Unit 904, Houston, TX 77054 USA.

PMID: 25317334 PMCID: PMC4196009 DOI: 10.1186/s40425-014-0036-y

Abstract

BACKGROUND: Adoptive T cell therapy represents an attractive modality for the treatment of patients with cancer. Peripheral blood mononuclear cells have been used as a source of antigen specific T cells but the very low frequency of T cells recognizing commonly expressed antigens such as NY-ESO-1 limit the applicability of this approach to other solid tumors. To overcome this, we tested a strategy combining IL-21 modulation during in vitro stimulation with first-in-class use of tetramer-guided cell sorting to generate NY-ESO-1 specific cytotoxic T lymphocytes (CTL).

METHODS: CTL generation was evaluated in 6 patients with NY-ESO-1 positive sarcomas, under clinical manufacturing conditions and characterized for phenotypic and functional properties.

RESULTS: Following in vitro stimulation, T cells stained with NY-ESO-1 tetramer were enriched from frequencies as low as 0.4% to >90% after single pass through a clinical grade sorter. NY-ESO-1 specific T cells were generated from all 6 patients. The final products expanded on average 1200-fold to a total of 36 billion cells, were oligoclonal and contained 67-97% CD8(+), tetramer(+) T cells with a memory phenotype that recognized endogenous NY-ESO-1.

CONCLUSION: This study represents the first series using tetramer-guided cell sorting to generate T cells for adoptive therapy. This approach, when used to target more broadly expressed tumor antigens such as WT-1 and additional Cancer-Testis antigens will enhance the scope and feasibility of adoptive T cell therapy.

Keywords: Adoptive T cell therapy; Antigen specific T cells; Immunotherapy; Influx cell sorting; Liposarcoma; Myxoid; NY-ESO-1; Synovial sarcoma; Tetramer

References

  1. Genes Chromosomes Cancer. 1992 Nov;5(4):278-85 - PubMed
  2. J Immunol Methods. 1990 Apr 17;128(2):189-201 - PubMed
  3. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4592-7 - PubMed
  4. N Engl J Med. 2011 Aug 25;365(8):725-33 - PubMed
  5. Sci Transl Med. 2011 Aug 10;3(95):95ra73 - PubMed
  6. Blood. 2008 Jan 1;111(1):229-35 - PubMed
  7. Sci Transl Med. 2011 Apr 27;3(80):80ra34 - PubMed
  8. PLoS One. 2012;7(2):e32165 - PubMed
  9. Clin Immunol. 2006 Jul;120(1):21-32 - PubMed
  10. Sci Transl Med. 2013 Feb 27;5(174):174ra27 - PubMed
  11. J Immunol Methods. 2007 Mar 30;320(1-2):119-31 - PubMed
  12. Blood. 2013 Aug 8;122(6):863-71 - PubMed
  13. J Immunol. 2008 May 1;180(9):6116-31 - PubMed
  14. Exp Hematol. 2010 Nov;38(11):1066-73 - PubMed
  15. N Engl J Med. 2008 Jun 19;358(25):2698-703 - PubMed
  16. J Clin Oncol. 2011 Mar 1;29(7):917-24 - PubMed
  17. Tissue Antigens. 1999 Feb;53(2):122-34 - PubMed
  18. Cancer Lett. 2004 Feb 10;204(1):105-13 - PubMed
  19. Nat Rev Immunol. 2012 Mar 22;12(4):269-81 - PubMed
  20. Cancer. 2012 Sep 15;118(18):4564-70 - PubMed
  21. J Immunol. 2005 Aug 15;175(4):2261-9 - PubMed
  22. Sci Transl Med. 2013 Mar 20;5(177):177ra38 - PubMed
  23. Int J Cancer. 2001 Oct 15;94(2):252-6 - PubMed
  24. J Clin Invest. 2005 Dec;115(12):3623-33 - PubMed
  25. Expert Opin Biol Ther. 2010 Apr;10(4):547-62 - PubMed
  26. Cancer Immunol Res. 2014 Jan;2(1):27-36 - PubMed
  27. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16168-73 - PubMed
  28. J Immunother. 2006 Mar-Apr;29(2):208-14 - PubMed
  29. J Clin Oncol. 1996 Apr;14(4):1201-8 - PubMed
  30. Nat Med. 2010 May;16(5):565-70, 1p following 570 - PubMed
  31. Mol Ther. 2007 Apr;15(4):825-33 - PubMed
  32. J Immunol Methods. 2010 Apr 15;355(1-2):52-60 - PubMed
  33. Cancer Immunol Res. 2013 Nov;1(5):303-8 - PubMed
  34. J Immunother. 2013 Feb;36(2):133-51 - PubMed
  35. Science. 2006 Oct 6;314(5796):126-9 - PubMed
  36. Blood. 2007 Jul 1;110(1):201-10 - PubMed
  37. J Immunol Methods. 1996 Sep 27;196(2):121-35 - PubMed

Publication Types

Grant support