Display options
Share it on

Iran J Pharm Res. 2014;13(2):417-29.

Computational aided-molecular imprinted polymer design for solid phase extraction of metaproterenol from plasma and determination by voltammetry using modified carbon nanotube electrode.

Iranian journal of pharmaceutical research : IJPR

Farhad Ahmadi, Ehsan Karamian

Affiliations

  1. Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah Universityof Medical Sciences, Kermanshah, Iran. ; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran.
  2. Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran.

PMID: 25237337 PMCID: PMC4157017

Abstract

A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to be the best choices of functional monomer and polymerization solvents, respectively. This polymer was then used as a selective sorbent to develop a molecularly imprinted solid-phase extraction (MISPE) procedure followed by differential pulse voltammetry by using modified carbon nanotube electrode. The analysis was performed in phosphate buffer, pH 7.0. Peak currents were measured at +0.67 V versus Ag/AgCl. The linear calibration range was 0.026-8.0 μg mL(-1) with a limit of detection 0.01 μg mL(-1). The relative standard deviation at 0.5 μg mL(-1) was 4.76% (n=5). The mean recoveries of 5 μg mL(-1) MTP from plasma was 92.2% (n=5). The data of MISPE-DPV were compared with the MISPE-HPLC-UV. Although, the MISPE-DPV was more sensitive but both techniques have similar accuracy and precision.

Keywords: Computational molecular modeling; Doping control; Metaproterenol; Modified carbon nano tube electrode; Molecularly imprinted polymer

References

  1. Anal Chim Acta. 2009 Aug 4;647(1):117-24 - PubMed
  2. Talanta. 2008 Jul 15;76(2):282-7 - PubMed
  3. Anal Bioanal Chem. 2005 Aug;382(8):1783-90 - PubMed
  4. Anal Chim Acta. 2007 Mar 21;587(1):67-74 - PubMed
  5. Anal Chim Acta. 2010 Jan 25;658(2):225-32 - PubMed
  6. Talanta. 2010 Jun 15;81(4-5):1446-53 - PubMed
  7. J Chromatogr A. 2012 Dec 28;1270:9-19 - PubMed
  8. Iran J Pharm Res. 2013 Winter;12(1):199-204 - PubMed
  9. J Assoc Off Anal Chem. 1984 Jan-Feb;67(1):137-8 - PubMed
  10. J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Oct 1;877(27):2945-51 - PubMed
  11. J Chromatogr. 1989 Aug 25;493(1):230-8 - PubMed
  12. Talanta. 2011 Sep 15;85(3):1680-8 - PubMed
  13. J Chromatogr A. 2011 Oct 28;1218(43):7739-47 - PubMed
  14. Saudi Pharm J. 2011 Jul;19(3):185-91 - PubMed
  15. Angew Chem Int Ed Engl. 2002 Apr 15;41(8):1353-5 - PubMed
  16. J Chromatogr B Biomed Sci Appl. 1998 Aug 21;713(1):3-25 - PubMed
  17. Anal Chim Acta. 2010 May 14;667(1-2):63-70 - PubMed
  18. Anal Chim Acta. 2008 Mar 10;610(2):282-8 - PubMed
  19. Iran J Pharm Res. 2013 Fall;12(4):645-57 - PubMed
  20. Chem Rev. 1999 Aug 11;99(8):2161-2200 - PubMed
  21. J Pharm Biomed Anal. 2011 Jul 15;55(5):916-22 - PubMed
  22. Biophys Chem. 1999 Apr 5;78(1-2):1-20 - PubMed
  23. Talanta. 2008 Jul 15;76(2):419-23 - PubMed
  24. Biomed Chromatogr. 2010 Apr;24(4):358-66 - PubMed
  25. J Allergy Clin Immunol. 2006 Apr;117(4):767-73 - PubMed

Publication Types