Display options
Share it on

Front Microbiol. 2014 Oct 29;5:546. doi: 10.3389/fmicb.2014.00546. eCollection 2014.

Earthworm symbiont Verminephrobacter eiseniae mediates natural transformation within host egg capsules using type IV pili.

Frontiers in microbiology

Seana K Davidson, Glenn F Dulla, Ruth A Go, David A Stahl, Nicolás Pinel

Affiliations

  1. Department of Civil and Environmental Engineering, University of Washington, Seattle, WA USA.
  2. Institute for Systems Biology, Seattle, WA USA.

PMID: 25400622 PMCID: PMC4212676 DOI: 10.3389/fmicb.2014.00546

Abstract

The dense microbial communities commonly associated with plants and animals should offer many opportunities for horizontal gene transfer through described mechanisms of DNA exchange including natural transformation (NT). However, studies of the significance of NT have focused primarily on pathogens. The study presented here demonstrates highly efficient DNA exchange by NT in a common symbiont of earthworms. The obligate bacterial symbiont Verminephrobacter eiseniae is a member of a microbial consortium of the earthworm Eisenia fetida that is transmitted into the egg capsules to colonize the embryonic worms. In the study presented here, by testing for transformants under different conditions in culture, we demonstrate that V. eiseniae can incorporate free DNA from the environment, that competency is regulated by environmental factors, and that it is sequence specific. Mutations in the type IV pili of V. eiseniae resulted in loss of DNA uptake, implicating the type IV pilus (TFP) apparatus in DNA uptake. Furthermore, injection of DNA carrying antibiotic-resistance genes into egg capsules resulted in transformants within the capsule, demonstrating the relevance of DNA uptake within the earthworm system. The ability to take up species-specific DNA from the environment may explain the maintenance of the relatively large, intact genome of this long-associated obligate symbiont, and provides a mechanism for acquisition of foreign genes within the earthworm system.

Keywords: Verminephrobacter; earthworm; horizontal gene transfer; natural transformation; symbiosis; type IV pili

References

  1. J Bacteriol. 1999 Sep;181(18):5591-9 - PubMed
  2. Annu Rev Microbiol. 1999;53:217-44 - PubMed
  3. Res Microbiol. 2000 Jul-Aug;151(6):487-91 - PubMed
  4. J Bacteriol. 2001 Apr;183(7):2359-66 - PubMed
  5. Science. 2001 May 11;292(5519):1096-9 - PubMed
  6. Mol Microbiol. 2001 May;40(3):700-7 - PubMed
  7. Mol Microbiol. 2001 Jul;41(2):379-91 - PubMed
  8. J Bacteriol. 2002 Jun;184(11):2855-6 - PubMed
  9. Arch Microbiol. 2002 Sep;178(3):193-201 - PubMed
  10. J Bacteriol. 1960 Apr;79:579-90 - PubMed
  11. Arch Microbiol. 2003 Dec;180(6):385-93 - PubMed
  12. Microbiology. 2003 Dec;149(Pt 12):3603-15 - PubMed
  13. J Bacteriol. 2004 Mar;186(5):1280-6 - PubMed
  14. Nat Rev Microbiol. 2004 Mar;2(3):241-9 - PubMed
  15. Nat Rev Microbiol. 2005 Sep;3(9):711-21 - PubMed
  16. Science. 2005 Dec 16;310(5755):1824-7 - PubMed
  17. Mol Microbiol. 2006 Jan;59(2):376-85 - PubMed
  18. Appl Environ Microbiol. 2006 Jan;72(1):769-75 - PubMed
  19. Appl Environ Microbiol. 2006 Jan;72(1):932-6 - PubMed
  20. Environ Microbiol. 2007 Oct;9(10):2496-511 - PubMed
  21. Res Microbiol. 2007 Dec;158(10):767-78 - PubMed
  22. ISME J. 2008 May;2(5):510-8 - PubMed
  23. Genome Biol. 2008;9(3):R60 - PubMed
  24. Int J Syst Evol Microbiol. 2008 Sep;58(Pt 9):2147-57 - PubMed
  25. J Bacteriol. 1991 Jun;173(12):3911-3 - PubMed
  26. Science. 2009 Jan 16;323(5912):379-82 - PubMed
  27. Appl Environ Microbiol. 2009 Aug;75(15):4936-49 - PubMed
  28. J Bacteriol. 1990 Jun;172(6):2911-9 - PubMed
  29. J Hyg (Lond). 1928 Jan;27(2):113-59 - PubMed
  30. PLoS One. 2011 Feb 11;6(2):e16861 - PubMed
  31. Environ Microbiol. 2010 Aug;12(8):2142-51 - PubMed
  32. Environ Microbiol. 2010 Aug;12(8):2277-88 - PubMed
  33. Environ Microbiol. 2010 Aug;12(8):2302-11 - PubMed
  34. ISME J. 2012 Jun;6(6):1166-75 - PubMed
  35. Genome Biol Evol. 2012;4(3):307-15 - PubMed
  36. MBio. 2012 Jul 24;3(4):e00193-12 - PubMed
  37. Mol Phylogenet Evol. 2013 Apr;67(1):188-200 - PubMed
  38. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3065-70 - PubMed
  39. J Biol Chem. 2013 Apr 5;288(14):9721-8 - PubMed
  40. PLoS Genet. 2013 Apr;9(4):e1003458 - PubMed
  41. Front Microbiol. 2014 Mar 28;5:128 - PubMed
  42. Evolution. 1991 Sep;45(6):1393-1421 - PubMed
  43. Proc Natl Acad Sci U S A. 1979 Feb;76(2):972-6 - PubMed
  44. Annu Rev Microbiol. 1986;40:211-35 - PubMed
  45. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11140-4 - PubMed
  46. Mol Microbiol. 1994 Apr;12(2):171-80 - PubMed
  47. Science. 1995 Jul 28;269(5223):538-40 - PubMed
  48. Annu Rev Microbiol. 1993;47:565-96 - PubMed
  49. Microbiol Rev. 1994 Sep;58(3):563-602 - PubMed
  50. J Gen Microbiol. 1993 Feb;139(2):295-305 - PubMed
  51. Appl Environ Microbiol. 1996 Oct;62(10):3673-8 - PubMed
  52. Gene. 1996 Nov 21;180(1-2):49-56 - PubMed
  53. Gene. 1997 Jun 11;192(1):125-34 - PubMed
  54. Mol Microbiol. 1998 Jul;29(1):321-30 - PubMed

Publication Types