Display options
Share it on

Appl Mech Rev. 2014 Jun 05;66(5). doi: 10.1115/1.4026249.

Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion.

Applied mechanics reviews

Begoña Alvarez-González, Ruedi Meili, Richard Firtel, Effie Bastounis, Juan C Del Álamo, Juan C Lasheras

Affiliations

  1. Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA, 92093-0411.
  2. Mechanical and Aerospace, Engineering Department, Division of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA.
  3. Division of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA.
  4. Mechanical and Aerospace Engineering Department, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA.
  5. Mechanical and Aerospace Engineering Department, Institute for Engineering in Medicine, Bioengineering Department, University of California, San Diego, La Jolla, CA.

PMID: 25328163 PMCID: PMC4201387 DOI: 10.1115/1.4026249

Abstract

Migrating cells exert traction forces when moving. Amoeboid cell migration is a common type of cell migration that appears in many physiological and pathological processes and is performed by a wide variety of cell types. Understanding the coupling of the biochemistry and mechanics underlying the process of migration has the potential to guide the development of pharmacological treatment or genetic manipulations to treat a wide range of diseases. The measurement of the spatiotemporal evolution of the traction forces that produce the movement is an important aspect for the characterization of the locomotion mechanics. There are several methods to calculate the traction forces exerted by the cells. Currently the most commonly used ones are traction force microscopy methods based on the measurement of the deformation induced by the cells on elastic substrate on which they are moving. Amoeboid cells migrate by implementing a motility cycle based on the sequential repetition of four phases. In this paper we review the role that specific cytoskeletal components play in the regulation of the cell migration mechanics. We investigate the role of specific cytoskeletal components regarding the ability of the cells to perform the motility cycle effectively and the generation of traction forces. The actin nucleation in the leading edge of the cell, carried by the ARP2/3 complex activated through the SCAR/WAVE complex, has shown to be fundamental to the execution of the cyclic movement and to the generation of the traction forces. The protein PIR121, a member of the SCAR/WAVE complex, is essential to the proper regulation of the periodic movement and the protein SCAR, also included in the SCAR/WAVE complex, is necessary for the generation of the traction forces during migration. The protein Myosin II, an important F-actin cross-linker and motor protein, is essential to cytoskeletal contractility and to the generation and proper organization of the traction forces during migration.

References

  1. Biophys J. 2011 Aug 3;101(3):575-84 - PubMed
  2. Biophys J. 2007 Apr 1;92(7):L58-60 - PubMed
  3. Mol Biol Cell. 2010 Feb 1;21(3):405-17 - PubMed
  4. PLoS Comput Biol. 2012;8(12):e1002793 - PubMed
  5. J Cell Biol. 2002 Dec 23;159(6):1109-19 - PubMed
  6. Cell Motil Cytoskeleton. 1998;39(1):31-51 - PubMed
  7. Annu Rev Cell Biol. 1988;4:649-86 - PubMed
  8. Biophys J. 2012 Aug 22;103(4):640-8 - PubMed
  9. Cell Motil Cytoskeleton. 1993;25(4):309-16 - PubMed
  10. J Theor Biol. 2006 Oct 7;242(3):607-16 - PubMed
  11. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6181-6 - PubMed
  12. J Cell Sci. 1995 Oct;108 ( Pt 10):3207-18 - PubMed
  13. Cell Regul. 1989 Nov;1(1):1-11 - PubMed
  14. Comput Methods Biomech Biomed Engin. 2011 May;14(5):459-68 - PubMed
  15. Cell Motil Cytoskeleton. 1994;27(1):1-12 - PubMed
  16. Cell Mol Bioeng. 2011 Dec;4(4):603-615 - PubMed
  17. Blood. 2010 Oct 28;116(17):3297-310 - PubMed
  18. J Cell Sci. 2003 Sep 15;116(Pt 18):3761-70 - PubMed
  19. Cell Motil Cytoskeleton. 2008 Apr;65(4):314-31 - PubMed
  20. PLoS One. 2013 Sep 04;8(9):e69850 - PubMed
  21. J Exp Biol. 1996 Apr;199(Pt 4):741-7 - PubMed
  22. Cell Mol Bioeng. 2009 Sep;2(3):425-436 - PubMed
  23. Nature. 2008 May 1;453(7191):51-5 - PubMed
  24. Dev Biol. 2001 Apr 1;232(1):255-64 - PubMed
  25. Mol Biol Cell. 2011 Nov;22(21):3995-4003 - PubMed
  26. J Leukoc Biol. 2001 Oct;70(4):491-509 - PubMed
  27. Development. 2004 Sep;131(17):4345-55 - PubMed
  28. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):443-6 - PubMed
  29. Biophys J. 1996 Apr;70(4):2008-22 - PubMed
  30. Microvasc Res. 1977 Jul;14(1):53-65 - PubMed
  31. PLoS One. 2011 Mar 29;6(3):e17833 - PubMed
  32. Phys Rev Lett. 2010 Dec 10;105(24):248103 - PubMed
  33. Microsc Res Tech. 1998 Dec 1;43(5):433-43 - PubMed
  34. Thromb Haemost. 2006 Jan;95(1):12-21 - PubMed
  35. Annu Rev Biophys Biomol Struct. 2007;36:451-77 - PubMed
  36. Biophys J. 2004 Jul;87(1):688-95 - PubMed
  37. J Cell Biol. 1994 Dec;127(6 Pt 2):1933-44 - PubMed
  38. EMBO J. 2004 Feb 25;23(4):749-59 - PubMed
  39. J Biomech. 2010 Jan 5;43(1):9-14 - PubMed
  40. Nat Methods. 2010 Dec;7(12):969-71 - PubMed
  41. Biophys J. 2011 Dec 7;101(11):2620-8 - PubMed
  42. J Cell Sci. 2004 Mar 15;117(Pt 8):1443-55 - PubMed
  43. Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3477-97 - PubMed
  44. Nat Protoc. 2011 Feb;6(2):187-213 - PubMed
  45. Curr Opin Cell Biol. 2009 Oct;21(5):636-44 - PubMed
  46. Science. 2003 Dec 5;302(5651):1704-9 - PubMed
  47. J Biomech Eng. 2013 Jul 1;135(7):71009 - PubMed
  48. Curr Opin Cell Biol. 2000 Feb;12(1):104-12 - PubMed
  49. Rev Sci Instrum. 2008 Apr;79(4):044302 - PubMed
  50. J Cell Sci. 2007 May 1;120(Pt 9):1624-34 - PubMed
  51. Nature. 2002 Aug 15;418(6899):732-3 - PubMed
  52. J Cell Biol. 1984 Sep;99(3):894-9 - PubMed
  53. Cell Adh Migr. 2011 Mar-Apr;5(2):170-80 - PubMed
  54. Cell. 1996 Feb 9;84(3):359-69 - PubMed
  55. J Cell Biol. 2010 Jan 11;188(1):11-9 - PubMed
  56. Eur J Cell Biol. 2006 Sep;85(9-10):873-95 - PubMed
  57. Cold Spring Harb Perspect Biol. 2011 Sep 01;3(9):a005074 - PubMed
  58. Eur J Immunol. 1998 Aug;28(8):2331-43 - PubMed
  59. Biophys J. 2004 Jan;86(1 Pt 1):617-28 - PubMed
  60. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13343-8 - PubMed
  61. Cell Motil Cytoskeleton. 1992;22(3):211-23 - PubMed
  62. Biophys J. 1999 Apr;76(4):2307-16 - PubMed
  63. Sensors (Basel). 2010;10(11):9948-62 - PubMed
  64. Methods Enzymol. 1998;298:489-96 - PubMed
  65. Am J Physiol Cell Physiol. 2002 Mar;282(3):C595-605 - PubMed
  66. Cell Motil Cytoskeleton. 2007 Jul;64(7):509-18 - PubMed
  67. J Cell Biol. 2001 May 14;153(4):881-8 - PubMed
  68. Int J Biol Sci. 2007 Jun 01;3(5):303-17 - PubMed
  69. J Cell Sci. 1995 Apr;108 ( Pt 4):1519-30 - PubMed
  70. Curr Biol. 2011 Jan 25;21(2):R66-8 - PubMed
  71. Biomech Model Mechanobiol. 2007 Nov;6(6):361-71 - PubMed
  72. J Cell Biol. 1987 May;104(5):1309-23 - PubMed
  73. Biochem J. 2007 Jan 15;401(2):377-90 - PubMed
  74. Nanotechnology. 2012 Feb 24;23(7):075101 - PubMed
  75. Science. 1987 May 29;236(4805):1086-91 - PubMed
  76. Nat Cell Biol. 1999 Jun;1(2):75-81 - PubMed

Publication Types

Grant support