Display options
Share it on

RSC Adv. 2014 Nov 05;4(100):57343-57349. doi: 10.1039/C4RA08572H.

Improving the design of the agarose spot assay for eukaryotic cell chemotaxis.

RSC advances

Alex C Szatmary, Christina H Stuelten, Ralph Nossal

Affiliations

  1. Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health, and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
  2. Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
  3. Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health, and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA [email protected].

PMID: 25530845 PMCID: PMC4266135 DOI: 10.1039/C4RA08572H

Abstract

Migration of cells along gradients of effector molecules, i.e., chemotaxis, is necessary in immune response and is involved in development and cancer metastasis. The experimental assessment of chemotaxis thus is of high interest. The agarose spot assay is a simple tissue culture system used to analyze chemotaxis. Although direction sensing requires gradients to be sufficiently steep, how the chemical gradients developed in this assay change over time, and thus, under what conditions chemotaxis is plausible, has not yet been determined. Here, we use numerical solution of the diffusion equation to determine the chemoattractant gradient produced in the assay. Our analysis shows that, for the usual spot size, the lifetime of the assay is optimized if the chemoattractant concentration in the spot is initially 30 times the dissociation constant of the chemoattractant-receptor bond. This result holds regardless of the properties of the chemoattractant. With this initial concentration, the chemoattractant gradient falls to the minimum threshold for directional sensing at the same time that the concentration drops to the optimal level for detecting gradient direction. If a higher initial chemoattractant concentration is used, the useful lifetime of the assay is likely to be shortened because receptor saturation may decrease the cells' sensitivity to the gradient; lower initial concentrations would result in too little chemoattractant for the cells to detect. Moreover, chemoattractants with higher diffusion coefficients would sustain gradients for less time. Based on previous measurements of the diffusion coefficients of the chemoattractants EGF and CXCL12, we estimate that the assay will produce gradients that cells can sense for a duration of 10 h for EGF and 5 h for CXCL12. These gradient durations are comparable to what can be achieved with the Boyden chamber assay. The analysis presented in this work facilitates determination of suitable parameters for the assay, and can be used to assess whether observed cell motility is likely due to chemotaxis or chemokinesis.

References

  1. Nat Rev Mol Cell Biol. 2004 Aug;5(8):626-34 - PubMed
  2. Lab Chip. 2013 Jul 7;13(13):2484-99 - PubMed
  3. Am J Pathol. 1978 Jan;90(1):159-72 - PubMed
  4. J Cell Biol. 1989 Mar;108(3):973-84 - PubMed
  5. J Neurosci. 1992 Apr;12(4):1253-61 - PubMed
  6. Cancer Res. 2001 Aug 1;61(15):5790-5 - PubMed
  7. Cell Immunol. 2012 Nov;280(1):36-43 - PubMed
  8. PLoS One. 2011;6(6):e20610 - PubMed
  9. Cancer Res. 2003 Apr 1;63(7):1667-75 - PubMed
  10. J Cell Sci. 1981 Dec;52:1-10 - PubMed
  11. PLoS One. 2013 Jul 15;8(7):e68422 - PubMed
  12. Curr Opin Cell Biol. 2004 Feb;16(1):4-13 - PubMed
  13. J Immunol Methods. 1981;40(1):45-60 - PubMed
  14. Exp Cell Res. 2012 Nov 1;318(18):2397-406 - PubMed
  15. Mol Cancer Res. 2012 Oct;10 (10 ):1369-79 - PubMed
  16. Biotechniques. 2010 Feb;48(2):121-4 - PubMed
  17. Exp Hematol. 2006 Nov;34(11):1553-62 - PubMed
  18. J Immunol. 1975 Dec;115(6):1650-6 - PubMed
  19. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5614-9 - PubMed
  20. Lab Invest. 2011 May;91(5):732-43 - PubMed
  21. J Immunol. 2011 Jan 1;186(1):53-61 - PubMed
  22. J Pharmacol Toxicol Methods. 2011 Nov-Dec;64(3):213-6 - PubMed
  23. PLoS One. 2013 Oct 18;8(10):e78744 - PubMed
  24. Nat Genet. 2011 Mar;43(3):197-203 - PubMed
  25. J Cell Biol. 1977 Nov;75(2 Pt 1):606-16 - PubMed
  26. Biomaterials. 2011 Jul;32(21):4903-13 - PubMed
  27. Acta Neuropathol. 2013 Apr;125(4):609-20 - PubMed
  28. Integr Biol (Camb). 2013 Mar;5(3):481-94 - PubMed
  29. J Neurosci. 2013 Jul 10;33(28):11643-54 - PubMed
  30. FEMS Microbiol Lett. 1997 Nov 15;156(2):265-9 - PubMed
  31. Mol Cancer Res. 2013 Aug;11(8):952-63 - PubMed
  32. J Exp Med. 1962 Mar 1;115:453-66 - PubMed
  33. Diabetes. 2013 Jul;62(7):2509-29 - PubMed
  34. Mol Cancer Res. 2012 Jul;10(7):881-91 - PubMed
  35. Nat Rev Cancer. 2004 Jul;4(7):540-50 - PubMed
  36. Protein Sci. 2009 Jul;18(7):1359-69 - PubMed
  37. Science. 2003 Dec 5;302(5651):1704-9 - PubMed
  38. J Control Release. 2006 Oct 10;115(2):189-96 - PubMed
  39. J Neurophysiol. 2004 Dec;92 (6):3471-81 - PubMed
  40. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13349-54 - PubMed

Publication Types

Grant support