Display options
Share it on

Proc Natl Acad Sci U S A. 2015 Jan 06;112(1):54-9. doi: 10.1073/pnas.1413941112. Epub 2014 Dec 22.

Multifarious assembly mixtures: systems allowing retrieval of diverse stored structures.

Proceedings of the National Academy of Sciences of the United States of America

Arvind Murugan, Zorana Zeravcic, Michael P Brenner, Stanislas Leibler

Affiliations

  1. School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138; [email protected] [email protected].
  2. School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138;
  3. Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540; and Laboratory of Living Matter, The Rockefeller University, New York, NY 10065.

PMID: 25535383 PMCID: PMC4291664 DOI: 10.1073/pnas.1413941112

Abstract

Self-assembly materials are traditionally designed so that molecular or mesoscale components form a single kind of large structure. Here, we propose a scheme to create "multifarious assembly mixtures," which self-assemble many different large structures from a set of shared components. We show that the number of multifarious structures stored in the solution of components increases rapidly with the number of different types of components. However, each stored structure can be retrieved by tuning only a few parameters, the number of which is only weakly dependent on the size of the assembled structure. Implications for artificial and biological self-assembly are discussed.

Keywords: complex materials; programmed assembly; stored structures

References

  1. Science. 2011 Oct 14;334(6053):204-8 - PubMed
  2. Nature. 2011 Oct 12;478(7368):225-8 - PubMed
  3. Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6054-9 - PubMed
  4. Nature. 2008 Jan 31;451(7178):549-52 - PubMed
  5. Trends Cell Biol. 2012 Dec;22(12):653-61 - PubMed
  6. Nature. 2006 Mar 16;440(7082):297-302 - PubMed
  7. Phys Rev Lett. 2001 Nov 5;87(19):198103 - PubMed
  8. Cell. 2009 Feb 20;136(4):701-18 - PubMed
  9. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12 ):4225-9 - PubMed
  10. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 - PubMed
  11. Nature. 2014 Jun 5;510(7503):103-8 - PubMed
  12. Science. 2012 Jun 1;336(6085):1171-4 - PubMed
  13. Nat Struct Mol Biol. 2004 Sep;11(9):812-5 - PubMed
  14. Nature. 2009 May 21;459(7245):414-8 - PubMed
  15. Nature. 2012 May 30;485(7400):623-6 - PubMed
  16. Phys Rev Lett. 2005 Feb 11;94(5):058302 - PubMed
  17. Science. 2009 Nov 27;326(5957):1235-40 - PubMed
  18. Phys Rev Lett. 2014 Jun 13;112(23):238103 - PubMed
  19. Nat Genet. 2002 Aug;31(4):370-7 - PubMed
  20. Langmuir. 2006 Feb 28;22(5):1991-2001 - PubMed
  21. Nature. 1996 Aug 15;382(6592):607-9 - PubMed
  22. Nature. 2008 Jan 31;451(7178):553-6 - PubMed
  23. Science. 2012 Nov 30;338(6111):1177-83 - PubMed
  24. Nature. 1996 Aug 15;382(6592):609-11 - PubMed
  25. Phys Rev Lett. 1985 Sep 30;55(14):1530-1533 - PubMed

Publication Types