Display options
Share it on

Physiol Rep. 2014 Dec 23;2(12). doi: 10.14814/phy2.12245. Print 2014 Dec 01.

Endogenous angiotensins and catecholamines do not reduce skin blood flow or prevent hypotension in preterm piglets.

Physiological reports

Yvonne A Eiby, Eugenie R Lumbers, Michael P Staunton, Layne L Wright, Paul B Colditz, Ian M R Wright, Barbara E Lingwood

Affiliations

  1. UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
  2. UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.
  3. School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia Graduate School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.

PMID: 25538149 PMCID: PMC4332223 DOI: 10.14814/phy2.12245

Abstract

Endocrine control of cardiovascular function is probably immature in the preterm infant; thus, it may contribute to the relative ineffectiveness of current adrenergic treatments for preterm cardiovascular compromise. This study aimed to determine the cardiovascular and hormonal responses to stress in the preterm piglet. Piglets were delivered by cesarean section either preterm (97 of 115 days) or at term (113 days). An additional group of preterm piglets received maternal glucocorticoids as used clinically. Piglets were sedated and underwent hypoxia (4% FiO2 for 20 min) to stimulate a cardiovascular response. Arterial blood pressure, skin blood flow, heart rate and plasma levels of epinephrine, norepinephrine, angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)), and cortisol were measured. Term piglets responded to hypoxia with vasoconstriction; preterm piglets had a lesser response. Preterm piglets had lower blood pressures throughout, with a delayed blood pressure response to the hypoxic stress compared with term piglets. This immature response occurred despite similar high levels of circulating catecholamines, and higher levels of Ang II compared with term animals. Prenatal exposure to glucocorticoids increased the ratio of Ang-(1-7):Ang II. Preterm piglets, in contrast to term piglets, had no increase in cortisol levels in response to hypoxia. Preterm piglets have immature physiological responses to a hypoxic stress but no deficit of circulating catecholamines. Reduced vasoconstriction in preterm piglets could result from vasodilator actions of Ang II. In glucocorticoid exposed preterm piglets, further inhibition of vasoconstriction may occur because of an increased conversion of Ang II to Ang-(1-7).

© 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Keywords: Blood pressure; cardiovascular; glucocorticoids; neonatal; skin blood flow

References

  1. Early Hum Dev. 1992 Oct;30(3):241-8 - PubMed
  2. Am J Physiol Regul Integr Comp Physiol. 2000 Sep;279(3):R830-8 - PubMed
  3. Pediatr Res. 2012 Jul;72(1):86-9 - PubMed
  4. J Dev Physiol. 1982 Dec;4(6):327-38 - PubMed
  5. Am J Obstet Gynecol. 1984 Aug 15;149(8):888-93 - PubMed
  6. Aust J Exp Biol Med Sci. 1968 Oct;46(5):563-72 - PubMed
  7. Reprod Fertil Dev. 1995;7(3):451-61 - PubMed
  8. Pediatrics. 2012 Jan;129(1):124-31 - PubMed
  9. Pediatr Res. 1977 Aug;11(8):889-93 - PubMed
  10. Eur J Pharmacol. 1979 Oct 1;58(3):255-64 - PubMed
  11. Stress. 2009 Jul;12(4):294-304 - PubMed
  12. Circ Res. 1977 Dec;41(6):844-8 - PubMed
  13. J Perinatol. 2009 May;29 Suppl 2:S44-9 - PubMed
  14. Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1280-6 - PubMed
  15. J Pediatr. 2002 Feb;140(2):183-91 - PubMed
  16. J Auton Nerv Syst. 1992 May 15;38(3):191-200 - PubMed
  17. Acta Paediatr Scand. 1987 Jan;76(1):54-9 - PubMed
  18. Arch Dis Child Fetal Neonatal Ed. 2008 Jul;93(4):F271-4 - PubMed
  19. J Vis Exp. 2011 Oct 11;(56):null - PubMed
  20. J Physiol. 1979 Sep;294:69-80 - PubMed
  21. PLoS One. 2013 Jul 09;8(7):e68763 - PubMed
  22. BMC Pediatr. 2004 Oct 05;4:20 - PubMed
  23. J Physiol. 1969 May;202(1):25-44 - PubMed
  24. Exp Physiol. 1992 Sep;77(5):709-17 - PubMed
  25. Curr Drug Metab. 2012 Jul;13(6):760-6 - PubMed
  26. J Physiol. 2012 Dec 1;590(23):6157-65 - PubMed
  27. Biol Neonate. 2006;89(2):82-7 - PubMed
  28. Pediatr Res. 1995 Jan;37(1):112-6 - PubMed
  29. Comp Biochem Physiol A Mol Integr Physiol. 1999 Jul;123(3):221-34 - PubMed
  30. Exp Physiol. 2001 Jan;86(1):71-82 - PubMed
  31. PLoS One. 2014 Mar 26;9(3):e92167 - PubMed
  32. J Pediatr. 1996 Oct;129(4):506-12 - PubMed
  33. Arch Dis Child Fetal Neonatal Ed. 2006 Sep;91(5):F359-62 - PubMed
  34. Acta Paediatr. 2000 Feb;89(2):129-33 - PubMed
  35. Pediatr Res. 2000 Feb;47(2):233-9 - PubMed
  36. Am J Physiol Regul Integr Comp Physiol. 2012 Oct 1;303(7):R769-77 - PubMed
  37. Pediatr Res. 2001 Jun;49(6):826-33 - PubMed
  38. Fed Proc. 1983 Apr;42(6):1643-7 - PubMed
  39. Trends Endocrinol Metab. 1994 Oct;5(8):347-53 - PubMed
  40. J Appl Physiol (1985). 2007 Oct;103(4):1311-7 - PubMed
  41. PLoS One. 2014 Mar 27;9(3):e93407 - PubMed
  42. Biol Neonate. 1992;61(5):294-301 - PubMed
  43. Am J Physiol. 1998 Jan;274(1 Pt 2):R160-7 - PubMed
  44. Pediatrics. 2007 Aug;120(2):372-80 - PubMed
  45. Biol Neonate. 1993;64(2-3):82-8 - PubMed
  46. Clin Exp Pharmacol Physiol. 2013 Aug;40(8):542-50 - PubMed
  47. Circ Res. 1990 Nov;67(5):1193-200 - PubMed
  48. Arch Dis Child Fetal Neonatal Ed. 2004 Mar;89(2):F119-26 - PubMed
  49. J Neurosci Methods. 2008 Jun 15;171(1):140-6 - PubMed
  50. Pediatr Res. 2008 Apr;63(4):415-9 - PubMed

Publication Types