Display options
Share it on

Front Behav Neurosci. 2014 Dec 09;8:429. doi: 10.3389/fnbeh.2014.00429. eCollection 2014.

Learned self-regulation of the lesioned brain with epidural electrocorticography.

Frontiers in behavioral neuroscience

Alireza Gharabaghi, Georgios Naros, Fatemeh Khademi, Jessica Jesser, Martin Spüler, Armin Walter, Martin Bogdan, Wolfgang Rosenstiel, Niels Birbaumer

Affiliations

  1. Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany.
  2. Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany.
  3. Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany ; Department of Computer Engineering, University of Leipzig Leipzig, Germany.
  4. Institute for Medical Psychology and Behavioural Neurobiology, Eberhard Karls University Tuebingen Tuebingen, Germany ; Ospedale San Camillo, IRCCS Venice, Italy ; DZD, Eberhard Karls University Tuebingen Tuebingen, Germany.

PMID: 25538591 PMCID: PMC4260503 DOI: 10.3389/fnbeh.2014.00429

Abstract

INTRODUCTION: Different techniques for neurofeedback of voluntary brain activations are currently being explored for clinical application in brain disorders. One of the most frequently used approaches is the self-regulation of oscillatory signals recorded with electroencephalography (EEG). Many patients are, however, unable to achieve sufficient voluntary control of brain activity. This could be due to the specific anatomical and physiological changes of the patient's brain after the lesion, as well as to methodological issues related to the technique chosen for recording brain signals.

METHODS: A patient with an extended ischemic lesion of the cortex did not gain volitional control of sensorimotor oscillations when using a standard EEG-based approach. We provided him with neurofeedback of his brain activity from the epidural space by electrocorticography (ECoG).

RESULTS: Ipsilesional epidural recordings of field potentials facilitated self-regulation of brain oscillations in an online closed-loop paradigm and allowed reliable neurofeedback training for a period of 4 weeks.

CONCLUSION: Epidural implants may decode and train brain activity even when the cortical physiology is distorted following severe brain injury. Such practice would allow for reinforcement learning of preserved neural networks and may well provide restorative tools for those patients who are severely afflicted.

Keywords: brain-machine interface; cortical lesion; electrocorticography; epidural implant; neurofeedback; neuroprosthetics; stroke

References

  1. Front Neural Circuits. 2012 Nov 16;6:87 - PubMed
  2. Brain. 2012 Feb;135(Pt 2):596-614 - PubMed
  3. J Neural Eng. 2014 Apr;11(2):026006 - PubMed
  4. Ann Neurol. 2013 Jul;74(1):100-8 - PubMed
  5. Stroke. 2008 Mar;39(3):910-7 - PubMed
  6. Front Hum Neurosci. 2014 May 06;8:285 - PubMed
  7. J Neural Eng. 2008 Jun;5(2):155-62 - PubMed
  8. J Neural Eng. 2011 Jun;8(3):036005 - PubMed
  9. PLoS One. 2012;7(10):e47048 - PubMed
  10. Neurorehabil Neural Repair. 2013 Jan;27(1):53-62 - PubMed
  11. Neuroimage. 2014 Feb 15;87:147-53 - PubMed
  12. J Neurosurg. 2011 Jun;114(6):1715-22 - PubMed
  13. Front Hum Neurosci. 2014 Mar 05;8:122 - PubMed
  14. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:281-4 - PubMed
  15. Neuroimage. 2014 Jan 15;85 Pt 2:779-93 - PubMed
  16. Eur J Neurosci. 2014 Jun;39(11):1951-9 - PubMed
  17. Restor Neurol Neurosci. 2014;32(4):517-25 - PubMed
  18. Clin Neurophysiol. 2003 Sep;114(9):1580-93 - PubMed
  19. PLoS One. 2013;8(2):e55344 - PubMed
  20. Exp Neurol. 2013 Jul;245:15-26 - PubMed
  21. Ann Neurol. 2012 Mar;71(3):353-61 - PubMed
  22. J Neurophysiol. 2014 Nov 1;112(9):2053-8 - PubMed
  23. Neuroimage. 2011 Apr 15;55(4):1779-90 - PubMed
  24. Neuroimage. 2010 Jul 15;51(4):1303-9 - PubMed
  25. Neuroimage. 2009 Jul 1;46(3):708-16 - PubMed
  26. IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 - PubMed
  27. Lancet. 2013 Feb 16;381(9866):557-64 - PubMed
  28. Neuroimage. 2011 May 15;56(2):837-42 - PubMed
  29. Front Hum Neurosci. 2013 Jul 10;7:338 - PubMed
  30. Brain Topogr. 2010 Jun;23(2):194-8 - PubMed
  31. Neuroimage. 2002 Jan;15(1):273-89 - PubMed
  32. Clin EEG Neurosci. 2011 Oct;42(4):253-8 - PubMed
  33. Nature. 1999 Mar 25;398(6725):297-8 - PubMed
  34. Nature. 2012 May 16;485(7398):372-5 - PubMed
  35. Clin EEG Neurosci. 2015 Oct;46(4):310-20 - PubMed
  36. Neurosurg Focus. 2009 Jul;27(1):E4 - PubMed
  37. Front Neurol. 2014 Aug 25;5:156 - PubMed
  38. J Neural Eng. 2013 Apr;10(2):026010 - PubMed

Publication Types