Display options
Share it on

Front Hum Neurosci. 2014 Dec 09;8:988. doi: 10.3389/fnhum.2014.00988. eCollection 2014.

Automatic processing of abstract musical tonality.

Frontiers in human neuroscience

Inyong Choi, Hari M Bharadwaj, Scott Bressler, Psyche Loui, Kyogu Lee, Barbara G Shinn-Cunningham

Affiliations

  1. Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA.
  2. Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Department of Biomedical Engineering, Boston University Boston, MA, USA.
  3. Department of Psychology and Program in Neuroscience and Behavior, Wesleyan University Middletown, CT, USA.
  4. Graduate School of Convergence Science and Technology, Seoul National University Suwon, South Korea.

PMID: 25538607 PMCID: PMC4260496 DOI: 10.3389/fnhum.2014.00988

Abstract

Music perception builds on expectancy in harmony, melody, and rhythm. Neural responses to the violations of such expectations are observed in event-related potentials (ERPs) measured using electroencephalography. Most previous ERP studies demonstrating sensitivity to musical violations used stimuli that were temporally regular and musically structured, with less-frequent deviant events that differed from a specific expectation in some feature such as pitch, harmony, or rhythm. Here, we asked whether expectancies about Western musical scale are strong enough to elicit ERP deviance components. Specifically, we explored whether pitches inconsistent with an established scale context elicit deviant components even though equally rare pitches that fit into the established context do not, and even when their timing is unpredictable. We used Markov chains to create temporally irregular pseudo-random sequences of notes chosen from one of two diatonic scales. The Markov pitch-transition probabilities resulted in sequences that favored notes within the scale, but that lacked clear melodic, harmonic, or rhythmic structure. At the random positions, the sequence contained probe tones that were either within the established scale or were out of key. Our subjects ignored the note sequences, watching a self-selected silent movie with subtitles. Compared to the in-key probes, the out-of-key probes elicited a significantly larger P2 ERP component. Results show that random note sequences establish expectations of the "first-order" statistical property of musical key, even in listeners not actively monitoring the sequences.

Keywords: ERP; P2; markov-chain; music; tonality

References

  1. Neuroimage. 2001 Dec;14(6):1402-8 - PubMed
  2. J Cogn Neurosci. 1998 Nov;10(6):717-33 - PubMed
  3. J Neurophysiol. 2013 Aug;110(4):973-83 - PubMed
  4. Brain Res. 2006 Oct 30;1117(1):162-74 - PubMed
  5. Brain. 2001 Jan;124(Pt 1):83-95 - PubMed
  6. Clin Neurophysiol. 2009 Jan;120(1):128-35 - PubMed
  7. Clin Neurophysiol. 2002 Oct;113(10):1544-57 - PubMed
  8. Brain Lang. 2000 Jan;71(1):145-8 - PubMed
  9. Brain Res Cogn Brain Res. 2003 Apr;16(2):145-61 - PubMed
  10. Neuroimage. 1999 Mar;9(3):330-6 - PubMed
  11. PLoS One. 2014 Feb 26;9(2):e89642 - PubMed
  12. Clin Neurophysiol. 2007 Dec;118(12):2544-90 - PubMed
  13. Neuroimage. 2010 Mar;50(1):302-13 - PubMed
  14. J Neurosci. 2009 Jan 14;29(2):454-9 - PubMed
  15. J Neurosci. 2011 Dec 14;31(50):18590-7 - PubMed
  16. Int J Psychophysiol. 2012 Feb;83(2):164-75 - PubMed
  17. Psychophysiology. 2011 Jan;48(1):4-22 - PubMed
  18. Psychophysiology. 1992 Jul;29(4):398-411 - PubMed
  19. Cereb Cortex. 2008 Jun;18(6):1350-60 - PubMed
  20. Clin Neurophysiol. 2004 Apr;115(4):732-44 - PubMed
  21. Psychophysiology. 2009 Jan;46(1):179-90 - PubMed
  22. Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36 - PubMed
  23. J Neurosci Methods. 2004 Mar 15;134(1):9-21 - PubMed
  24. Brain. 2009 May;132(Pt 5):1277-86 - PubMed
  25. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3172-7 - PubMed
  26. Psychophysiology. 1996 Jul;33(4):369-75 - PubMed
  27. Neuroreport. 1992 Dec;3(12):1149-51 - PubMed
  28. Clin Neurophysiol. 2001 Oct;112(10):1850-9 - PubMed
  29. J Am Acad Audiol. 2009 Apr;20(4):239-50 - PubMed
  30. Neurosci Lett. 2007 Oct 22;426(3):181-6 - PubMed
  31. Trends Neurosci. 2002 Jul;25(7):348-53 - PubMed
  32. Cereb Cortex. 1999 Jun;9(4):392-405 - PubMed
  33. Curr Opin Neurobiol. 1998 Apr;8(2):227-33 - PubMed
  34. Neuropsychologia. 1992 Aug;30(8):723-41 - PubMed
  35. Nat Neurosci. 1999 Jan;2(1):79-87 - PubMed
  36. PLoS One. 2011;6(6):e21493 - PubMed
  37. Biol Psychol. 1979 Mar;8(2):81-136 - PubMed
  38. Cereb Cortex. 2005 Jan;15(1):109-16 - PubMed
  39. Hear Res. 2009 Feb;248(1-2):48-59 - PubMed
  40. Acta Psychol (Amst). 1978 Jul;42(4):313-29 - PubMed
  41. Curr Opin Neurobiol. 2007 Aug;17(4):465-70 - PubMed
  42. Trends Cogn Sci. 2012 Jul;16(7):390-8 - PubMed
  43. J Cogn Neurosci. 2010 Oct;22(10):2401-13 - PubMed
  44. Electroencephalogr Clin Neurophysiol. 1970 Apr;28(4):360-7 - PubMed
  45. J Cogn Neurosci. 2000 May;12(3):520-41 - PubMed
  46. Front Hum Neurosci. 2012 Mar 14;6:43 - PubMed
  47. Trends Cogn Sci. 2005 Dec;9(12):578-84 - PubMed

Publication Types