Display options
Share it on

Ecol Evol. 2014 Oct;4(20):3940-59. doi: 10.1002/ece3.1168. Epub 2014 Sep 26.

Integrating environmental, molecular, and morphological data to unravel an ice-age radiation of arctic-alpine Campanula in western North America.

Ecology and evolution

Eric G DeChaine, Barry M Wendling, Brenna R Forester

Affiliations

  1. Department of Biology, Western Washington University 516 High St., Bellingham, Washington, 98225.
  2. University Program in Ecology, Nicholas School of the Environment, Duke University Box 90328, Durham, North Carolina, 27708.

PMID: 25505522 PMCID: PMC4242577 DOI: 10.1002/ece3.1168

Abstract

Many arctic-alpine plant genera have undergone speciation during the Quaternary. The bases for these radiations have been ascribed to geographic isolation, abiotic and biotic differences between populations, and/or hybridization and polyploidization. The Cordilleran Campanula L. (Campanulaceae Juss.), a monophyletic clade of mostly endemic arctic-alpine taxa from western North America, experienced a recent and rapid radiation. We set out to unravel the factors that likely influenced speciation in this group. To do so, we integrated environmental, genetic, and morphological datasets, tested biogeographic hypotheses, and analyzed the potential consequences of the various factors on the evolutionary history of the clade. We created paleodistribution models to identify potential Pleistocene refugia for the clade and estimated niche space for individual taxa using geographic and climatic data. Using 11 nuclear loci, we reconstructed a species tree and tested biogeographic hypotheses derived from the paleodistribution models. Finally, we tested 28 morphological characters, including floral, vegetative, and seed characteristics, for their capacity to differentiate taxa. Our results show that the combined effect of Quaternary climatic variation, isolation among differing environments in the mountains in western North America, and biotic factors influencing floral morphology contributed to speciation in this group during the mid-Pleistocene. Furthermore, our biogeographic analyses uncovered asynchronous consequences of interglacial and glacial periods for the timing of refugial isolation within the southern and northwestern mountains, respectively. These findings have broad implications for understanding the processes promoting speciation in arctic-alpine plants and the rise of numerous endemic taxa across the region.

Keywords: Arctic-alpine plants; Pacific Northwest; Quaternary; ecological niche modeling; morphology; statistical phylogeography

References

  1. Mol Ecol. 2010 Nov;19(21):4589-621 - PubMed
  2. Science. 1969 Jul 11;165(3889):131-7 - PubMed
  3. Syst Biol. 2011 Oct;60(5):719-31 - PubMed
  4. Genetics. 1993 Mar;133(3):693-709 - PubMed
  5. Am J Bot. 2005 Mar;92(3):477-86 - PubMed
  6. Ecol Evol. 2014 Feb;4(3):266-75 - PubMed
  7. Proc Biol Sci. 1998 Sep 22;265(1407):1707-12 - PubMed
  8. Ecology. 2007 Nov;88(11):2783-92 - PubMed
  9. New Phytol. 2013 Mar;197(4):1095-103 - PubMed
  10. Evolution. 1949 Mar;3(1):82-97 - PubMed
  11. Mol Biol Evol. 2010 Mar;27(3):570-80 - PubMed
  12. Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):265-74 - PubMed
  13. Proc Biol Sci. 2010 May 22;277(1687):1489-96 - PubMed
  14. Heredity (Edinb). 2013 Sep;111(3):227-37 - PubMed
  15. Genetics. 1989 Nov;123(3):597-601 - PubMed
  16. Mol Biol Evol. 2000 Oct;17(10):1483-98 - PubMed
  17. Mol Phylogenet Evol. 2009 Sep;52(3):575-87 - PubMed
  18. PLoS One. 2012;7(11):e50076 - PubMed
  19. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9054-8 - PubMed
  20. Am Nat. 2005 Nov;166(5):581-91 - PubMed
  21. Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9130-5 - PubMed
  22. PLoS One. 2013 Nov 01;8(11):e79451 - PubMed
  23. Syst Biol. 2008 Feb;57(1):4-14 - PubMed
  24. Bioinformatics. 2009 Jun 1;25(11):1451-2 - PubMed
  25. PLoS One. 2011;6(9):e23559 - PubMed
  26. Methods Mol Biol. 2000;132:365-86 - PubMed
  27. Science. 2000 Aug 25;289(5483):1343-6 - PubMed
  28. Mol Ecol. 2010 Nov;19(22):5009-21 - PubMed
  29. Science. 2010 Jan 1;327(5961):92-4 - PubMed
  30. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5936-41 - PubMed
  31. Syst Biol. 2000 Jun;49(2):369-81 - PubMed
  32. BMC Bioinformatics. 2008 Jul 11;9:307 - PubMed
  33. Am Nat. 2007 Nov;170(5):690-701 - PubMed
  34. Ecol Evol. 2012 Mar;2(3):649-65 - PubMed
  35. Syst Biol. 2006 Feb;55(1):21-30 - PubMed
  36. PLoS One. 2013 Jul 26;8(7):e69814 - PubMed
  37. Bioinformatics. 2000 Jun;16(6):562-3 - PubMed
  38. BMC Evol Biol. 2007 Nov 08;7:214 - PubMed
  39. Virology. 1999 Dec 20;265(2):218-25 - PubMed
  40. Bioinformatics. 2007 Nov 1;23(21):2947-8 - PubMed
  41. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13757-62 - PubMed

Publication Types