Display options
Share it on

J Pers Med. 2014 Jun 05;4(2):282-96. doi: 10.3390/jpm4020282.

Differential transcriptome profile of peripheral white cells to identify biomarkers involved in oxaliplatin induced neuropathy.

Journal of personalized medicine

Manuel Morales, Julio Ávila, Rebeca González-Fernández, Laia Boronat, María Luisa Soriano, Pablo Martín-Vasallo

Affiliations

  1. Service of Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, 38010 Tenerife, Spain. [email protected].
  2. Developmental Biology Laboratory, Department of Biochemistry and Molecular Biology, University of La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Spain. [email protected].
  3. Developmental Biology Laboratory, Department of Biochemistry and Molecular Biology, University of La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Spain. [email protected].
  4. Service of Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, 38010 Tenerife, Spain. [email protected].
  5. Service of Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, 38010 Tenerife, Spain. [email protected].
  6. Developmental Biology Laboratory, Department of Biochemistry and Molecular Biology, University of La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Spain. [email protected].

PMID: 25563226 PMCID: PMC4263976 DOI: 10.3390/jpm4020282

Abstract

Anticancer chemotherapy (CT) produces non-desirable effects on normal healthy cells and tissues. Oxaliplatin is widely used in the treatment of colorectal cancer and responsible for the development of sensory neuropathy in varying degrees, from complete tolerance to chronic neuropathic symptoms. We studied the differential gene expression of peripheral leukocytes in patients receiving oxaliplatin-based chemotherapy to find genes and pathways involved in oxaliplatin-induced peripheral neuropathy. Circulating white cells were obtained prior and after three cycles of FOLFOX or CAPOX chemotherapy from two groups of patients: with or without neuropathy. RNA was purified, and transcriptomes were analyzed. Differential transcriptomics revealed a total of 502 genes, which were significantly up- or down-regulated as a result of chemotherapy treatment. Nine of those genes were expressed in only one of two situations: CSHL1, GH1, KCMF1, IL36G and EFCAB8 turned off after CT, and CSRP2, IQGAP1, GNRH2, SMIM1 and C5orf17 turned on after CT. These genes are likely to be associated with the onset of oxaliplatin-induced peripheral neuropathy. The quantification of their expression in peripheral white cells may help to predict non-desirable side effects and, consequently, allow a better, more personalized chemotherapy.

References

  1. Cancer. 2012 Jun 1;118(11):2828-36 - PubMed
  2. J Biol Chem. 2012 Dec 7;287(50):41684-96 - PubMed
  3. Cell. 1988 Feb 12;52(3):471-80 - PubMed
  4. Semin Immunol. 2013 Dec 15;25(6):458-65 - PubMed
  5. Semin Oncol. 2003 Aug;30(4 Suppl 15):5-13 - PubMed
  6. Semin Oncol. 2002 Oct;29(5 Suppl 15):21-33 - PubMed
  7. World J Gastroenterol. 2013 Jun 28;19(24):3770-80 - PubMed
  8. Nat Med. 2013 May;19(5):538-40 - PubMed
  9. Oncogene. 2006 May 4;25(19):2795-800 - PubMed
  10. Cell Mol Life Sci. 2010 Jul;67(14):2425-37 - PubMed
  11. Exp Mol Pathol. 2005 Oct;79(2):100-7 - PubMed
  12. Jpn J Cancer Res. 2002 Jun;93(6):636-43 - PubMed
  13. Curr Mol Pharmacol. 2010 Jan;3(1):37-52 - PubMed
  14. J Neurooncol. 2010 May;97(3):323-37 - PubMed
  15. Nucleic Acids Res. 2009 Jan;37(Database issue):D412-6 - PubMed
  16. Nucleic Acids Res. 2007 Jan;35(Database issue):D561-5 - PubMed
  17. Biol Chem. 2009 Dec;390(12):1293-302 - PubMed
  18. Cell Tissue Res. 2012 Jul;349(1):39-48 - PubMed
  19. PLoS One. 2013 Jul 16;8(7):e68907 - PubMed
  20. Discov Med. 2010 Jul;10(50):44-51 - PubMed
  21. Nat Biotechnol. 2010 May;28(5):511-5 - PubMed
  22. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  23. Nat Genet. 2013 May;45(5):537-41 - PubMed
  24. Nat Genet. 2013 May;45(5):542-5 - PubMed
  25. FEBS Lett. 2009 Jun 18;583(12):1817-24 - PubMed
  26. EMBO Mol Med. 2013 May;5(5):751-61 - PubMed
  27. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  28. Oncogene. 2010 Jul 15;29(28):4058-67 - PubMed
  29. Nucleic Acids Res. 2013 Jan;41(Database issue):D793-800 - PubMed
  30. Br J Cancer. 2006 Jan 30;94(2):184-8 - PubMed
  31. Onco Targets Ther. 2013 Oct 16;6:1453-62 - PubMed
  32. Mol Cancer Ther. 2009 Jan;8(1):10-6 - PubMed
  33. Nature. 2010 Sep 16;467(7313):323-7 - PubMed
  34. FEBS Lett. 2004 Dec 3;578(1-2):21-5 - PubMed
  35. Ann Oncol. 2014 Feb;25(2):398-403 - PubMed
  36. Nat Med. 2013 May;19(5):626-30 - PubMed
  37. Cancer Cell. 2013 Jun 10;23(6):715-7 - PubMed
  38. Twin Res Hum Genet. 2013 Apr;16(2):560-74 - PubMed
  39. Nature. 2001 Dec 20-27;414(6866):865-71 - PubMed
  40. PLoS Comput Biol. 2012;8(4):e1002464 - PubMed
  41. Neuromuscul Disord. 2003 Jan;13(1):60-7 - PubMed
  42. Reproduction. 2009 May;137(5):769-77 - PubMed
  43. Mol Cell Neurosci. 2003 Dec;24(4):1116-30 - PubMed
  44. PLoS Genet. 2012 Sep;8(9):e1002921 - PubMed
  45. J Biol Chem. 2014 Mar 28;289(13):9100-12 - PubMed
  46. Neurobiol Dis. 2011 Mar;41(3):661-8 - PubMed
  47. J Biol Chem. 2011 Apr 29;286(17):15010-21 - PubMed
  48. J Neurosci Res. 1993 Mar 1;34(4):377-81 - PubMed
  49. J Clin Oncol. 2011 Sep 1;29(25):3381-8 - PubMed
  50. PLoS One. 2013 Nov 13;8(11):e78783 - PubMed
  51. Cell Signal. 2009 Oct;21(10):1471-8 - PubMed
  52. Biochem J. 2001 Nov 1;359(Pt 3):485-96 - PubMed
  53. J Clin Invest. 2014 Jan;124(1):72-4 - PubMed
  54. Semin Oncol. 1998 Apr;25(2 Suppl 5):4-12 - PubMed
  55. J Biol Chem. 2004 Apr 2;279(14):13677-88 - PubMed
  56. Brain Res Brain Res Rev. 1998 Dec;28(3):370-490 - PubMed
  57. N Engl J Med. 2004 Jun 3;350(23):2343-51 - PubMed
  58. Oncol Lett. 2013 Sep;6(3):648-654 - PubMed
  59. J Virol. 2012 May;86(9):5179-91 - PubMed
  60. Gynecol Oncol. 2011 Apr;121(1):174-80 - PubMed
  61. J Clin Endocrinol Metab. 2011 Oct;96(10):E1619-29 - PubMed

Publication Types