Display options
Share it on

Biotechnol Biofuels. 2014 Dec 03;7(1):165. doi: 10.1186/s13068-014-0165-z. eCollection 2014.

A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E.

Biotechnology for biofuels

Sonya M Clarkson, Scott D Hamilton-Brehm, Richard J Giannone, Nancy L Engle, Timothy J Tschaplinski, Robert L Hettich, James G Elkins

Affiliations

  1. BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA.
  2. BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA ; Current address: Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, NV USA.
  3. BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA ; Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA.

PMID: 25506391 PMCID: PMC4265447 DOI: 10.1186/s13068-014-0165-z

Abstract

BACKGROUND: Chemical and physical pretreatment of lignocellulosic biomass improves substrate reactivity for increased microbial biofuel production, but also restricts growth via the release of furan aldehydes, such as furfural and 5-hydroxymethylfurfural (5-HMF). The physiological effects of these inhibitors on thermophilic, fermentative bacteria are important to understand; especially as cellulolytic strains are being developed for consolidated bioprocessing (CBP) of lignocellulosic feedstocks. Identifying mechanisms for detoxification of aldehydes in naturally resistant strains, such as Thermoanaerobacter spp., may also enable improvements in candidate CBP microorganisms.

RESULTS: Thermoanaerobacter pseudethanolicus 39E, an anaerobic, saccharolytic thermophile, was found to grow readily in the presence of 30 mM furfural and 20 mM 5-HMF and reduce these aldehydes to their respective alcohols in situ. The proteomes of T. pseudethanolicus 39E grown in the presence or absence of 15 mM furfural were compared to identify upregulated enzymes potentially responsible for the observed reduction. A total of 225 proteins were differentially regulated in response to the 15 mM furfural treatment with 152 upregulated versus 73 downregulated. Only 87 proteins exhibited a twofold or greater change in abundance in either direction. Of these, 54 were upregulated in the presence of furfural and 33 were downregulated. Two oxidoreductases were upregulated at least twofold by furfural and were targeted for further investigation. Teth39_1597 encodes a predicted butanol dehydrogenase (BdhA) and Teth39_1598, a predicted aldo/keto reductase (AKR). Both genes were cloned from T. pseudethanolicus 39E, with the respective enzymes overexpressed in E. coli and specific activities determined against a variety of aldehydes. Overexpressed BdhA showed significant activity with all aldehydes tested, including furfural and 5-HMF, using NADPH as the cofactor. Cell extracts with AKR also showed activity with NADPH, but only with four-carbon butyraldehyde and isobutyraldehyde.

CONCLUSIONS: T. pseudethanolicus 39E displays intrinsic tolerance to the common pretreatment inhibitors furfural and 5-HMF. Multidimensional proteomic analysis was used as an effective tool to identify putative mechanisms for detoxification of furfural and 5-HMF. T. pseudethanolicus was found to upregulate an NADPH-dependent alcohol dehydrogenase 6.8-fold in response to furfural. In vitro enzyme assays confirmed the reduction of furfural and 5-HMF to their respective alcohols.

Keywords: 5-hydroxymethylfurfural; Biofuels; Butanol dehydrogenase; Furfural; Inhibitor; Lignocellulosic; Pretreatment; Proteomics; Thermophiles

References

  1. Trends Biotechnol. 2009 Jul;27(7):398-405 - PubMed
  2. Bioresour Technol. 2009 Jan;100(1):10-8 - PubMed
  3. Biotechnol Biofuels. 2009 Jun 17;2(1):12 - PubMed
  4. J Mol Microbiol Biotechnol. 2010;19(3):123-33 - PubMed
  5. Appl Environ Microbiol. 2009 Oct;75(19):6132-41 - PubMed
  6. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13752-7 - PubMed
  7. Bioresour Technol. 2011 Oct;102(20):9586-92 - PubMed
  8. Proteomics. 2009 Dec;9(24):5471-83 - PubMed
  9. J Biol Chem. 1963 Aug;238:2882-6 - PubMed
  10. Biotechnol Bioeng. 2000 Jun 5;68(5):524-30 - PubMed
  11. J Proteome Res. 2011 Dec 2;10(12):5302-14 - PubMed
  12. Appl Microbiol. 1974 May;27(5):985-7 - PubMed
  13. Appl Environ Microbiol. 2010 Feb;76(4):1014-20 - PubMed
  14. Appl Microbiol Biotechnol. 2004 Nov;66(1):10-26 - PubMed
  15. Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8931-6 - PubMed
  16. Appl Microbiol Biotechnol. 2010 Sep;88(1):199-208 - PubMed
  17. Biotechnol Biofuels. 2013 Sep 12;6(1):131 - PubMed
  18. PLoS One. 2011;6(8):e22942 - PubMed
  19. Biotechnol Biofuels. 2012 Jan 04;5(1):2 - PubMed
  20. Appl Microbiol Biotechnol. 2008 Dec;81(4):743-53 - PubMed
  21. Appl Microbiol Biotechnol. 2011 Nov;92(3):641-52 - PubMed
  22. Biotechnol Bioeng. 1999 Oct 5;65(1):24-33 - PubMed
  23. Int J Syst Evol Microbiol. 2007 Oct;57(Pt 10):2191-3 - PubMed
  24. Biochem J. 1996 May 15;316 ( Pt 1):115-22 - PubMed
  25. Anaerobe. 2008 Apr;14(2):125-7 - PubMed
  26. BMC Genomics. 2010 Nov 24;11:660 - PubMed
  27. Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49 - PubMed
  28. Bioresour Technol. 2010 Jul;101(13):4851-61 - PubMed
  29. Appl Environ Microbiol. 2009 Jul;75(13):4315-23 - PubMed
  30. Yeast. 2006 Apr 30;23(6):455-64 - PubMed
  31. Biochem J. 1994 Aug 15;302 ( Pt 1):163-70 - PubMed
  32. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13769-74 - PubMed
  33. Curr Opin Biotechnol. 2012 Jun;23(3):396-405 - PubMed
  34. Biotechnol Bioeng. 2000 Sep 5;69(5):526-36 - PubMed
  35. Appl Environ Microbiol. 2011 Nov;77(22):7998-8008 - PubMed
  36. Nat Biotechnol. 2008 Feb;26(2):169-72 - PubMed
  37. Appl Microbiol Biotechnol. 2011 May;90(3):809-25 - PubMed
  38. J Proteome Res. 2002 Jan-Feb;1(1):21-6 - PubMed
  39. Nat Biotechnol. 2014 Mar;32(3):223-6 - PubMed
  40. Biotechnol Biofuels. 2009 Oct 15;2:26 - PubMed
  41. J Proteome Res. 2006 Sep;5(9):2339-47 - PubMed
  42. Biotechnol Biofuels. 2013 Jan 28;6(1):16 - PubMed
  43. BMC Genomics. 2012 Jul 23;13:336 - PubMed
  44. Biotechnol Bioeng. 2012 Mar;109(3):686-94 - PubMed
  45. Appl Environ Microbiol. 2009 Jun;75(11):3765-76 - PubMed
  46. J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89 - PubMed
  47. Appl Microbiol Biotechnol. 2007 Nov;77(1):61-8 - PubMed
  48. Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents - PubMed
  49. Biotechnol Lett. 2010 Jun;32(6):823-8 - PubMed

Publication Types