Display options
Share it on

ACS Photonics. 2014 Oct 15;1(10):974-984. doi: 10.1021/ph500190q. Epub 2014 Sep 11.

Nanoparticle-Film Plasmon Ruler Interrogated with Transmission Visible Spectroscopy.

ACS photonics

Ryan T Hill, Klaudia M Kozek, Angus Hucknall, David R Smith, Ashutosh Chilkoti

Affiliations

  1. Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Center for Metamaterials and Integrated Plasmonics, and Center for Biologically Inspired Materials and Material Systems, Duke University , Durham, North Carolina 27708, United States.

PMID: 25541618 PMCID: PMC4270419 DOI: 10.1021/ph500190q

Abstract

The widespread use of plasmonic nanorulers (PNRs) in sensing platforms has been plagued by technical challenges associated with the development of methods to fabricate precisely controlled nanostructures with high yield and characterize them with high throughput. We have previously shown that creating PNRs in a nanoparticle-film (NP-film) format enables the fabrication of an extremely large population of uniform PNRs with 100% yield using a self-assembly approach, which facilitates high-throughput PNR characterization using ensemble spectroscopic measurements and eliminates the need for expensive microscopy systems required by many other PNR platforms. We expand upon this prior work herein, showing that the NP-film PNR can be made compatible with aqueous sensing studies by adapting it for use in a transmission localized surface plasmon resonance spectroscopy format, where the coupled NP-film resonance responsible for the PNR signal is directly probed using an extinction measurement from a standard spectrophotometer. We designed slide holders that fit inside standard spectrophotometer cuvettes and position NP-film samples so that the coupled NP-film resonance can be detected in a collinear optical configuration. Once the NP-film PNR samples are cuvette-compatible, it is straightforward to calibrate the PNR in aqueous solution and use it to characterize dynamic, angstrom-scale distance changes resulting from pH-induced swelling of polyelectrolyte (PE) spacer layers as thin as 1 PE layer and also of a self-assembled monolayer of an amine-terminated alkanethiol. This development is an important step toward making PNR sensors more user-friendly and encouraging their widespread use in various sensing schemes.

Keywords: 3D printing; localized surface plasmon resonance; plasmon coupling; plasmon ruler; plasmonics; sensor

References

  1. Nano Lett. 2008 Jul;8(7):1803-8 - PubMed
  2. Nano Lett. 2011 Mar 9;11(3):1221-6 - PubMed
  3. Science. 2003 Jan 17;299(5605):371-4 - PubMed
  4. ACS Nano. 2012 Oct 23;6(10):9237-46 - PubMed
  5. Nano Lett. 2008 Jan;8(1):214-20 - PubMed
  6. J Am Chem Soc. 2002 Sep 4;124(35):10596-604 - PubMed
  7. ACS Nano. 2011 Feb 22;5(2):748-60 - PubMed
  8. J Phys Chem B. 2003 Dec 11;107(49):13557-62 - PubMed
  9. Anal Chem. 2010 Nov 15;82(22):9275-81 - PubMed
  10. J Am Chem Soc. 2005 Jun 29;127(25):9207-15 - PubMed
  11. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):996-1001 - PubMed
  12. Nat Biotechnol. 2005 Jun;23(6):741-5 - PubMed
  13. J Phys Chem B. 2006 Sep 7;110(35):17444-51 - PubMed
  14. Nano Lett. 2010 Oct 13;10(10):4150-4 - PubMed
  15. Chem Soc Rev. 2014 Jun 7;43(11):3884-97 - PubMed
  16. ACS Appl Mater Interfaces. 2011 Feb;3(2):143-6 - PubMed
  17. Anal Chem. 2007 Jul 15;79(14):5278-83 - PubMed
  18. Nano Lett. 2012 Apr 11;12(4):2088-94 - PubMed
  19. Analyst. 2013 Feb 21;138(4):1015-9 - PubMed
  20. Nano Lett. 2005 Nov;5(11):2246-52 - PubMed
  21. EMBO Rep. 2010 May;11(5):366-72 - PubMed
  22. J Am Chem Soc. 2010 Jul 21;132(28):9600-1 - PubMed
  23. Nano Lett. 2005 Oct;5(10):2009-13 - PubMed
  24. Nano Lett. 2008 Aug;8(8):2245-52 - PubMed
  25. Nano Lett. 2012 Apr 11;12(4):1757-64 - PubMed
  26. Small. 2011 Jul 18;7(14):1993-7 - PubMed
  27. Nano Lett. 2008 Feb;8(2):731-6 - PubMed
  28. Small. 2013 Jan 28;9(2):234-40 - PubMed
  29. Chemistry. 2002 Sep 2;8(17):3849-57 - PubMed
  30. J Am Chem Soc. 2004 Dec 15;126(49):15950-1 - PubMed
  31. J Phys Chem C Nanomater Interfaces. 2010 Mar 1;114(11):4901-4908 - PubMed
  32. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2667-72 - PubMed
  33. Science. 2012 Aug 31;337(6098):1072-4 - PubMed
  34. Anal Chem. 2002 Feb 1;74(3):504-9 - PubMed

Publication Types