Display options
Share it on

Mol Syndromol. 2014 Dec;5(6):276-86. doi: 10.1159/000368865. Epub 2014 Nov 08.

A mouse splice-site mutant and individuals with atypical chromosome 22q11.2 deletions demonstrate the crucial role for crkl in craniofacial and pharyngeal development.

Molecular syndromology

Kerry A Miller, Tiong Y Tan, Megan F Welfare, Susan M White, Zornitza Stark, Ravi Savarirayan, Trent Burgess, Andrew A Heggie, Georgina Caruana, John F Bertram, John F Bateman, Peter G Farlie

Affiliations

  1. Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia.
  2. Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Victorian Clinical Genetics Services, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia.
  3. Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Victorian Clinical Genetics Services, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia.
  4. Victorian Clinical Genetics Services, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia.
  5. Section of Oral and Maxillofacial Surgery, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia.
  6. Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Vic., Australia.
  7. Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.
  8. Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia.

PMID: 25565927 PMCID: PMC4281577 DOI: 10.1159/000368865

Abstract

The 22q11.2 deletion syndrome (22q11DS) is thought to be a contiguous gene syndrome caused by haploinsufficiency for a variable number of genes with overlapping function during the development of the craniofacial, pharyngeal and cardiac structures. The complexity of genetic and developmental anomalies resulting in 22q11DS has made attributing causation to specific genes difficult. The CRKL gene resides within the common 3-Mb region, most frequently affected in 22q11DS, and has been shown to play an essential role in the development of tissues affected in 22q11DS. Here, we report the characterisation of a mouse strain we named 'snoopy', harbouring a novel Crkl splice-site mutation that results in a loss of Crkl expression. The snoopy strain exhibits a variable phenotype that includes micrognathia, pharyngeal occlusion, aglossia and holoprosencephaly, and altered retinoic acid and endothelin signalling. Together, these features are reminiscent of malformations occurring in auriculocondylar syndrome and agnathia-otocephaly complex, 2 conditions not previously associated with the CRKL function. Comparison of the features of a cohort of patients harbouring small 22q11.2 deletions centred over the CRKL gene, but sparing TBX1, highlights the role of CRKL in contributing to the craniofacial features of 22q11DS. These analyses demonstrate the central role of Crkl in regulating signalling events in the developing oropharyngeal complex and its potential to contribute to dysmorphology.

Keywords: Craniofacial development; Crkl; Deletion 22q11.2; Malformation; Pharyngeal patterning

References

  1. Hear Res. 2013 May;299:53-62 - PubMed
  2. J Med Genet. 2011 Dec;48(12):831-9 - PubMed
  3. PLoS Genet. 2013 Aug;9(8):e1003746 - PubMed
  4. J Mol Neurosci. 2013 Nov;51(3):1046-51 - PubMed
  5. Wiley Interdiscip Rev Dev Biol. 2013 May-Jun;2(3):369-77 - PubMed
  6. Eur J Hum Genet. 2003 Apr;11(4):349-51 - PubMed
  7. Am J Hum Genet. 2012 May 4;90(5):907-14 - PubMed
  8. Open Biol. 2012 May;2(5):120061 - PubMed
  9. PLoS One. 2013;8(3):e55429 - PubMed
  10. PLoS One. 2013 Oct 15;8(10):e76342 - PubMed
  11. Clin Genet. 2010 Sep;78(3):201-18 - PubMed
  12. Clin Genet. 2011 Mar;79(3):293-5 - PubMed
  13. J Med Genet. 2002 Oct;39(10):E62 - PubMed
  14. Nat Genet. 2001 Mar;27(3):293-8 - PubMed
  15. Genes Dev. 2005 Mar 1;19(5):530-5 - PubMed
  16. Am J Med Genet. 1997 Oct 17;72(2):180-5 - PubMed
  17. Dev Cell. 2006 Jan;10 (1):81-92 - PubMed
  18. Am J Med Genet A. 2013 Apr;161A(4):803-8 - PubMed
  19. J Med Genet. 2005 Nov;42(11):871-6 - PubMed
  20. Am J Med Genet C Semin Med Genet. 2013 Nov;163C(4):306-17 - PubMed
  21. Cell Signal. 2009 Apr;21(4):462-9 - PubMed
  22. Mol Cytogenet. 2009 Feb 24;2:9 - PubMed
  23. Mol Endocrinol. 2011 Sep;25(9):1499-512 - PubMed
  24. Development. 2004 Sep;131(18):4413-23 - PubMed
  25. Am J Med Genet A. 2012 Mar;158A(3):574-80 - PubMed
  26. Am J Med Genet. 2002 Oct 1;112(2):209-14 - PubMed
  27. J Med Genet. 2001 Dec;38(12):E45 - PubMed
  28. Dev Cell. 2006 Jan;10(1):71-80 - PubMed
  29. Am J Med Genet A. 2012 Oct;158A(10):2412-20 - PubMed
  30. Am J Hum Genet. 2013 Dec 5;93(6):1118-25 - PubMed
  31. BMC Med Genet. 2009 Jun 02;10:48 - PubMed
  32. J Med Genet. 2013 Mar;50(3):174-86 - PubMed
  33. Dev Dyn. 2008 Nov;237(11):3115-27 - PubMed

Publication Types