Display options
Share it on

Front Syst Neurosci. 2014 Dec 23;8:239. doi: 10.3389/fnsys.2014.00239. eCollection 2014.

Motion detection based on recurrent network dynamics.

Frontiers in systems neuroscience

Jeroen Joukes, Till S Hartmann, Bart Krekelberg

Affiliations

  1. Center for Molecular and Behavioral Neuroscience, Rutgers University Newark, NJ, USA.

PMID: 25565992 PMCID: PMC4274907 DOI: 10.3389/fnsys.2014.00239

Abstract

The detection of visual motion requires temporal delays to compare current with earlier visual input. Models of motion detection assume that these delays reside in separate classes of slow and fast thalamic cells, or slow and fast synaptic transmission. We used a data-driven modeling approach to generate a model that instead uses recurrent network dynamics with a single, fixed temporal integration window to implement the velocity computation. This model successfully reproduced the temporal response dynamics of a population of motion sensitive neurons in macaque middle temporal area (MT) and its constituent parts matched many of the properties found in the motion processing pathway (e.g., Gabor-like receptive fields (RFs), simple and complex cells, spatially asymmetric excitation and inhibition). Reverse correlation analysis revealed that a simplified network based on first and second order space-time correlations of the recurrent model behaved much like a feedforward motion energy (ME) model. The feedforward model, however, failed to capture the full speed tuning and direction selectivity properties based on higher than second order space-time correlations typically found in MT. These findings support the idea that recurrent network connectivity can create temporal delays to compute velocity. Moreover, the model explains why the motion detection system often behaves like a feedforward ME network, even though the anatomical evidence strongly suggests that this network should be dominated by recurrent feedback.

Keywords: middle temporal area; model; motion; recurrent connections; time

References

  1. J Neurophysiol. 1984 Dec;52(6):1106-30 - PubMed
  2. J Neurosci. 2007 Oct 10;27(41):11009-18 - PubMed
  3. J Physiol. 1978 Oct;283:79-99 - PubMed
  4. Biol Cybern. 2000 May;82(5):383-90 - PubMed
  5. Front Syst Neurosci. 2013 Mar 06;7:2 - PubMed
  6. J Neurosci. 1990 Oct;10(10):3323-34 - PubMed
  7. J Physiol. 2002 Mar 1;539(Pt 2):623-36 - PubMed
  8. J Opt Soc Am A. 1985 Feb;2(2):322-41 - PubMed
  9. J Vis. 2006 Apr 28;6(4):414-28 - PubMed
  10. Network. 2001 May;12(2):199-213 - PubMed
  11. J Neurosci. 2011 Jul 20;31(29):10437-44 - PubMed
  12. Neuron. 2003 Aug 14;39(4):681-91 - PubMed
  13. J Opt Soc Am A. 1985 Feb;2(2):284-99 - PubMed
  14. J Neurophysiol. 2005 Jan;93(1):281-93 - PubMed
  15. Vis Neurosci. 2008 Sep-Dec;25(5-6):647-59 - PubMed
  16. Vision Res. 1998 Sep;38(18):2769-86 - PubMed
  17. Vision Res. 2010 Aug 6;50(17):1676-92 - PubMed
  18. J Neurophysiol. 1996 Apr;75(4):1515-45 - PubMed
  19. Vision Res. 1991;31(7-8):1079-86 - PubMed
  20. J Neurosci. 1994 Apr;14(4):2069-79 - PubMed
  21. J Neurosci. 1984 Mar;4(3):880-95 - PubMed
  22. J Opt Soc Am A. 1985 Feb;2(2):243-51 - PubMed
  23. J Neurophysiol. 2005 May;93(5):2908-21 - PubMed
  24. J Physiol. 1978 Oct;283:53-77 - PubMed
  25. Vision Res. 2000;40(27):3685-702 - PubMed
  26. J Neurophysiol. 2013 Nov;110(9):2007-18 - PubMed
  27. J Neurophysiol. 1987 Feb;57(2):357-80 - PubMed
  28. J Neurophysiol. 1992 Mar;67(3):508-29 - PubMed
  29. Vis Neurosci. 1997 Jul-Aug;14(4):741-9 - PubMed
  30. J Neurosci. 1995 Oct;15(10):6700-19 - PubMed
  31. J Neurophysiol. 1981 Nov;46(5):1102-19 - PubMed
  32. J Neurophysiol. 1986 Aug;56(2):462-80 - PubMed
  33. Neuron. 2005 Jun 16;46(6):945-56 - PubMed
  34. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14488-93 - PubMed
  35. J Neurophysiol. 2006 Jan;95(1):255-70 - PubMed
  36. Neuron. 2005 Jan 6;45(1):133-45 - PubMed
  37. Neural Comput. 1998 Feb 15;10(2):353-71 - PubMed
  38. J Neurosci. 1996 Dec 1;16(23):7733-41 - PubMed
  39. J Physiol. 1983 Nov;344:305-25 - PubMed
  40. Exp Brain Res. 1992;90(1):40-6 - PubMed
  41. Science. 1995 Aug 18;269(5226):981-5 - PubMed
  42. J Opt Soc Am A. 1985 Feb;2(2):252-9 - PubMed
  43. J Neurophysiol. 2004 Mar;91(3):1171-82 - PubMed
  44. Neural Comput. 2004 Oct;16(10):2041-66 - PubMed
  45. Biol Cybern. 1999 Mar;80(3):171-83 - PubMed
  46. Vision Res. 1998 Mar;38(5):743-61 - PubMed

Publication Types

Grant support