Display options
Share it on

Front Genet. 2014 Dec 23;5:431. doi: 10.3389/fgene.2014.00431. eCollection 2014.

Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviors.

Frontiers in genetics

Daria Molodtsova, Brock A Harpur, Clement F Kent, Kajendra Seevananthan, Amro Zayed

Affiliations

  1. Department of Biology, York University Toronto, ON, Canada.
  2. Department of Computer Science and Engineering, York University Toronto, ON, Canada.

PMID: 25566318 PMCID: PMC4275039 DOI: 10.3389/fgene.2014.00431

Abstract

It is increasingly apparent that genes and networks that influence complex behavior are evolutionary conserved, which is paradoxical considering that behavior is labile over evolutionary timescales. How does adaptive change in behavior arise if behavior is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behavior, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behavior of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behavior can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

Keywords: Apis mellifera; evo devo; natural selection; network hubs; social evolution

References

  1. PLoS Comput Biol. 2012;8(12):e1002806 - PubMed
  2. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18012-7 - PubMed
  3. Evolution. 2007 May;61(5):995-1016 - PubMed
  4. Nat Rev Genet. 2007 Mar;8(3):206-16 - PubMed
  5. Trends Genet. 2007 Jul;23(7):334-41 - PubMed
  6. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2614-9 - PubMed
  7. BMC Genomics. 2011 Mar 29;12:164 - PubMed
  8. Nat Rev Genet. 2011 Dec 06;13(1):59-69 - PubMed
  9. Nat Rev Genet. 2011 Mar;12(3):204-13 - PubMed
  10. Naturwissenschaften. 2007 Apr;94(4):247-67 - PubMed
  11. Genome Res. 2013 Aug;23(8):1235-47 - PubMed
  12. Nature. 2011 Mar 24;471(7339):527-31 - PubMed
  13. Curr Opin Struct Biol. 2004 Jun;14(3):283-91 - PubMed
  14. PLoS Genet. 2009 Aug;5(8):e1000592 - PubMed
  15. Mol Biol Evol. 2014 Mar;31(3):560-73 - PubMed
  16. Annu Rev Genet. 2012;46:97-119 - PubMed
  17. Nat Genet. 2014 Oct;46(10):1081-8 - PubMed
  18. Evolution. 2008 Sep;62(9):2131-54 - PubMed
  19. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  20. Mol Biol Evol. 2014 Feb;31(2):419-24 - PubMed
  21. Annu Rev Genet. 2012;46:591-615 - PubMed
  22. Cold Spring Harb Symp Quant Biol. 2009;74:419-26 - PubMed
  23. Trends Ecol Evol. 2008 Jul;23(7):377-85 - PubMed
  24. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20274-9 - PubMed
  25. Philos Trans R Soc Lond B Biol Sci. 2011 Jul 27;366(1574):2100-10 - PubMed
  26. Mol Ecol. 2014 Jan;23(1):26-8 - PubMed
  27. Q Rev Biol. 2005 Sep;80(3):317-36 - PubMed
  28. BMC Evol Biol. 2011 Nov 07;11:326 - PubMed
  29. Nucleic Acids Res. 2010 Oct;38(18):5959-69 - PubMed
  30. Nature. 2005 Oct 20;437(7062):1149-52 - PubMed
  31. Genome Res. 2006 Mar;16(3):414-27 - PubMed
  32. Mol Biol Evol. 2005 Apr;22(4):803-6 - PubMed
  33. Genome Biol. 2013 Feb 26;14(2):R20 - PubMed
  34. Mol Ecol. 2012 Sep;21(18):4414-21 - PubMed
  35. Nat Rev Genet. 2013 Sep;14(9):645-60 - PubMed
  36. Mol Biol Evol. 2015 Feb;32(2):334-46 - PubMed
  37. PLoS Genet. 2013;9(12):e1003995 - PubMed
  38. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18020-5 - PubMed
  39. PLoS Comput Biol. 2009 Jun;5(6):e1000413 - PubMed
  40. Biosystems. 2009 Dec;98(3):137-48 - PubMed
  41. PLoS Genet. 2010 Jan 22;6(1):e1000825 - PubMed
  42. Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18034-9 - PubMed
  43. Nat Rev Genet. 2004 Nov;5(11):838-49 - PubMed
  44. Cell. 2008 Jul 11;134(1):25-36 - PubMed
  45. BMC Genomics. 2014 Jan 30;15:86 - PubMed

Publication Types