Display options
Share it on

Front Bioeng Biotechnol. 2014 Dec 11;2:67. doi: 10.3389/fbioe.2014.00067. eCollection 2014.

The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence.

Frontiers in bioengineering and biotechnology

Anna Hofbauer, Jenny Peters, Elsa Arcalis, Thomas Rademacher, Johannes Lampel, François Eudes, Alessandro Vitale, Eva Stoger

Affiliations

  1. Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria.
  2. Institute of Molecular Biotechnology, RWTH Aachen University , Aachen , Germany.
  3. Agriculture and Agri-Food Canada , Lethbridge, AB , Canada.
  4. Institute of Agricultural Biology and Biotechnology, National Research Council (CNR) , Milan , Italy.

PMID: 25566533 PMCID: PMC4263181 DOI: 10.3389/fbioe.2014.00067

Abstract

Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PB formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.

Keywords: intermembrane space; molecular farming; plastid import; protein bodies; recombinant protein; subcellular targeting

References

  1. J Mol Biol. 2001 Aug 31;311(5):1001-9 - PubMed
  2. J Biotechnol. 2007 Aug 31;131(2):97-105 - PubMed
  3. PLoS One. 2013;8(1):e54708 - PubMed
  4. Biomaterials. 2005 Jan;26(1):109-15 - PubMed
  5. BMC Plant Biol. 2012 Mar 16;12:36 - PubMed
  6. Plant Physiol. 2010 Jun;153(2):693-702 - PubMed
  7. Trends Plant Sci. 2002 Jan;7(1):14-21 - PubMed
  8. J Exp Bot. 2002 Apr;53(370):947-58 - PubMed
  9. Plant Biotechnol J. 2008 May;6(4):379-91 - PubMed
  10. Biochim Biophys Acta. 2002 Jun 12;1590(1-3):177-89 - PubMed
  11. Annu Rev Plant Biol. 2010;61:157-80 - PubMed
  12. Int J Pharm. 2011 Mar 15;406(1-2):153-62 - PubMed
  13. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11127-32 - PubMed
  14. J Exp Bot. 2005 Apr;56(414):1205-12 - PubMed
  15. Plant Physiol. 2004 Nov;136(3):3447-56 - PubMed
  16. Plant Cell Environ. 2008 May;31(5):646-57 - PubMed
  17. Plant Physiol. 2012 Oct;160(2):571-81 - PubMed
  18. Nat Biotechnol. 2000 Mar;18(3):333-8 - PubMed
  19. Plant Cell. 2006 Oct;18(10):2608-21 - PubMed
  20. J Mol Biol. 2000 Jul 21;300(4):1005-16 - PubMed
  21. Annu Rev Plant Biol. 2014;65:743-68 - PubMed
  22. Plant Biotechnol J. 2013 Jan;11(1):66-76 - PubMed
  23. BMC Biotechnol. 2013 May 10;13:40 - PubMed
  24. Plant Physiol. 1995 Jan;107(1):13-23 - PubMed
  25. Plant Mol Biol. 1984 Jul;3(4):227-34 - PubMed
  26. Pharmaceutics. 2013 May 10;5(2):277-93 - PubMed
  27. BMC Biol. 2009 Aug 07;7:48 - PubMed
  28. Peptides. 2010 Aug;31(8):1421-5 - PubMed
  29. Plant Mol Biol. 2011 Jul;76(3-5):427-41 - PubMed
  30. BMC Biol. 2009 Jan 28;7:5 - PubMed
  31. Methods Mol Biol. 2009;483:193-208 - PubMed
  32. Plant Biotechnol J. 2008 Jan;6(1):46-61 - PubMed
  33. Curr Pharm Des. 2013;19(31):5612-21 - PubMed
  34. Biochim Biophys Acta. 2009 Jan;1793(1):71-7 - PubMed
  35. Plant Signal Behav. 2010 Feb;5(2):105-9 - PubMed
  36. Front Plant Sci. 2014 Jul 15;5:331 - PubMed
  37. Nat Biotechnol. 2006 Jan;24(1):76-7 - PubMed
  38. Plant Cell Rep. 2013 Mar;32(3):389-99 - PubMed
  39. BMC Cancer. 2014 May 24;14:367 - PubMed
  40. Curr Pharm Des. 2013;19(31):5495-502 - PubMed
  41. J Agric Food Chem. 2009 May 13;57(9):3886-94 - PubMed
  42. Plant Physiol. 1995 Apr;107(4):1411-1418 - PubMed
  43. J Biol Chem. 2002 Dec 6;277(49):47770-8 - PubMed
  44. J Biol Chem. 2010 Nov 12;285(46):35633-44 - PubMed
  45. PLoS One. 2011 Apr 29;6(4):e19474 - PubMed
  46. Mol Plant. 2009 Nov;2(6):1325-35 - PubMed
  47. Plant Cell. 1989 Oct;1(10):1011-23 - PubMed
  48. Plant Biotechnol J. 2013 Dec;11(9):1029-33 - PubMed
  49. Trends Plant Sci. 2010 Sep;15(9):515-21 - PubMed
  50. Plant J. 2001 Nov;28(4):483-91 - PubMed
  51. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10986-91 - PubMed
  52. Plant Cell. 1994 Dec;6(12):1911-1922 - PubMed
  53. J Exp Bot. 2008;59(10):2815-29 - PubMed
  54. Mol Plant. 2009 Nov;2(6):1181-97 - PubMed
  55. Mol Pharm. 2013 May 6;10 (5):2062-70 - PubMed
  56. Curr Opin Cell Biol. 2009 Aug;21(4):494-500 - PubMed

Publication Types

Grant support