Display options
Share it on

Life (Basel). 2014 Dec 11;4(4):944-67. doi: 10.3390/life4040944.

Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413.

Life (Basel, Switzerland)

Teresa Thiel, Brenda S Pratte

Affiliations

  1. Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA. [email protected].
  2. Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA. [email protected].

PMID: 25513762 PMCID: PMC4284476 DOI: 10.3390/life4040944

Abstract

The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.

References

  1. Mol Phylogenet Evol. 2002 Apr;23(1):82-90 - PubMed
  2. J Bacteriol. 1997 Aug;179(16):5222-5 - PubMed
  3. Biochem J. 1988 Feb 1;249(3):745-51 - PubMed
  4. J Biol Chem. 2013 May 10;288(19):13173-7 - PubMed
  5. J Bacteriol. 2006 Aug;188(16):6020-5 - PubMed
  6. J Bacteriol. 2011 Mar;193(5):1172-82 - PubMed
  7. Nucleic Acids Res. 2005 Sep 12;33(16):5156-71 - PubMed
  8. J Bacteriol. 1987 Sep;169(9):4024-9 - PubMed
  9. J Bacteriol. 2001 Jan;183(1):280-6 - PubMed
  10. J Bacteriol. 2005 Jan;187(2):405-14 - PubMed
  11. Mol Microbiol. 2013 Apr;88(2):413-24 - PubMed
  12. Science. 2011 Jan 7;331(6013):91-4 - PubMed
  13. J Biol Chem. 2004 Dec 24;279(52):54963-71 - PubMed
  14. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9358-62 - PubMed
  15. Res Microbiol. 2001 Apr-May;152(3-4):311-21 - PubMed
  16. J Bacteriol. 1994 Mar;176(5):1214-23 - PubMed
  17. J Bacteriol. 1996 Feb;178(3):735-44 - PubMed
  18. J Bacteriol. 1991 Nov;173(22):7098-105 - PubMed
  19. Science. 1988 Dec 9;242(4884):1421-3 - PubMed
  20. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6762-7 - PubMed
  21. J Bacteriol. 1995 Sep;177(18):5294-302 - PubMed
  22. J Bacteriol. 2006 Aug;188(16):5806-11 - PubMed
  23. J Biol Chem. 1989 Nov 15;264(32):19200-7 - PubMed
  24. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8623-7 - PubMed
  25. Plant Cell. 2014 Mar;26(3):1230-45 - PubMed
  26. Biochem Soc Trans. 2005 Feb;33(Pt 1):152-6 - PubMed
  27. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):599-604 - PubMed
  28. J Bacteriol. 1993 May;175(10):3031-42 - PubMed
  29. Nature. 2009 Aug 13;460(7257):839-47 - PubMed
  30. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8812-6 - PubMed
  31. Cancer Res. 2001 Jun 15;61(12):4784-90 - PubMed
  32. J Bacteriol. 1996 Aug;178(15):4493-9 - PubMed
  33. J Bacteriol. 1989 Aug;171(8):4138-45 - PubMed
  34. J Bacteriol. 1990 Jul;172(7):3925-31 - PubMed
  35. Biochim Biophys Acta. 2002 Oct 11;1578(1-3):95-8 - PubMed
  36. Mol Gen Genet. 1988 Oct;214(2):278-85 - PubMed
  37. J Bacteriol. 1995 Mar;177(6):1570-5 - PubMed
  38. J Biol Chem. 2004 May 7;279(19):19739-46 - PubMed
  39. Microbiology. 1995 Sep;141 ( Pt 9):2235-44 - PubMed
  40. Science. 2011 Nov 18;334(6058):940 - PubMed
  41. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15094-9 - PubMed
  42. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2754-8 - PubMed
  43. Mol Microbiol. 2004 Jan;51(2):539-49 - PubMed
  44. Stand Genomic Sci. 2014 Jan 01;9(3):562-73 - PubMed
  45. BMC Genomics. 2014 Jan 13;15:22 - PubMed
  46. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10424-9 - PubMed
  47. Mol Microbiol. 2007 Jan;63(1):177-92 - PubMed
  48. J Biol Chem. 1996 Apr 19;271(16):9764-70 - PubMed
  49. J Biol Chem. 1997 Aug 22;272(34):21604-8 - PubMed
  50. Arch Microbiol. 1994;162(6):422-9 - PubMed
  51. Biofactors. 1988 Jul;1(2):111-6 - PubMed
  52. Cold Spring Harb Perspect Biol. 2010 Apr;2(4):a000315 - PubMed
  53. Mol Gen Genet. 1990 Apr;221(2):227-34 - PubMed
  54. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11679-84 - PubMed
  55. BMC Genomics. 2011 Jun 28;12:332 - PubMed
  56. J Bacteriol. 2001 Jan;183(2):411-25 - PubMed
  57. Science. 2011 Nov 18;334(6058):974-7 - PubMed
  58. Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9209-14 - PubMed
  59. Mol Microbiol. 2003 Mar;47(5):1239-49 - PubMed
  60. Annu Rev Microbiol. 2008;62:93-111 - PubMed
  61. Cell. 1983 Sep;34(2):665-71 - PubMed
  62. FEBS Lett. 1999 Apr 23;449(2-3):159-64 - PubMed
  63. J Biol Chem. 1986 Jan 15;261(2):772-8 - PubMed
  64. Met Ions Biol Syst. 1995;31:363-405 - PubMed
  65. J Bacteriol. 1991 Sep;173(17):5457-69 - PubMed
  66. Nucleic Acids Res. 1988 Oct 25;16(20):9860 - PubMed
  67. Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22 - PubMed
  68. FEBS J. 2010 Feb;277(3):817-32 - PubMed
  69. J Bacteriol. 2003 Apr;185(7):2306-14 - PubMed
  70. Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17626-31 - PubMed
  71. Appl Environ Microbiol. 1984 Mar;47(3):449-54 - PubMed
  72. Ann Microbiol (Paris). 1983 Jul-Aug;134B(1):181-93 - PubMed
  73. J Bacteriol. 2006 Jan;188(2):464-8 - PubMed
  74. Met Ions Biol Syst. 2002;39:75-119 - PubMed
  75. J Bacteriol. 2014 Oct;196(20):3609-21 - PubMed
  76. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20130-5 - PubMed
  77. Trends Microbiol. 2007 Aug;15(8):340-9 - PubMed
  78. Mol Microbiol. 1993 Feb;7(3):447-59 - PubMed
  79. Arch Microbiol. 2002 Dec;179(1):50-6 - PubMed
  80. Mol Microbiol. 2006 Jan;59(2):367-75 - PubMed
  81. Biotechnol Bioeng. 2002 Dec 30;80(7):777-83 - PubMed
  82. J Bacteriol. 1997 May;179(9):2930-7 - PubMed
  83. J Bacteriol. 2010 Jul;192(13):3311-20 - PubMed
  84. FEBS Lett. 2014 May 2;588(9):1787-94 - PubMed
  85. J Bacteriol. 2011 Apr;193(8):1823-32 - PubMed
  86. J Bacteriol. 2008 Dec;190(24):8115-25 - PubMed
  87. PLoS One. 2010 Jul 08;5(7):e11486 - PubMed
  88. EMBO J. 1990 Oct;9(10):3379-88 - PubMed
  89. J Bacteriol. 1988 Nov;170(11):5034-41 - PubMed
  90. J Bacteriol. 1993 Oct;175(19):6276-86 - PubMed

Publication Types