Display options
Share it on

Evol Appl. 2011 Sep;4(5):621-33. doi: 10.1111/j.1752-4571.2011.00185.x. Epub 2011 Apr 02.

Genetic correlations between adults and larvae in a marine fish: potential effects of fishery selection on population replenishment.

Evolutionary applications

Darren W Johnson, Mark R Christie, Jessica Moye, Mark A Hixon

Affiliations

  1. Department of Zoology, Oregon State University Corvallis, OR, USA.

PMID: 25568010 PMCID: PMC3352533 DOI: 10.1111/j.1752-4571.2011.00185.x

Abstract

Correlated genetic responses have been hypothesized as important components of fishery-induced evolution, although predictive data from wild populations have been difficult to obtain. Here, we demonstrate substantial genetic correlations between a trait often subjected to fishery selection (adult body length) and traits that affect survival of larvae (length and swimming performance) in a wild population of a marine fish (bicolor damselfish, Stegastes partitus). Through both genetic covariance and size-dependent maternal effects, selection on adult size may cause a considerable, correlated response in larval traits. To quantify how variation in larval traits may affect survival, we introduce a flexible method that uses information from selection measurements to account for frequency dependence and estimate the relationship between phenotype and relative survival across a broad range of phenotypic values. Using this method, we synthesize studies of selective mortality on larval size for eight species of fish and show that variation in larval size may result in considerable variation in larval survival. We predict that observed rates of fishery selection on adult marine fishes may substantially reduce larval size and survival. The evolution of smaller larvae in response to fishery selection may therefore have substantial consequences for the viability of fished populations.

Keywords: carryover effects; frequency-dependent selection; frequency-independent selection; hard selection; larval quality; maternal effects; quantitative genetics; rapid evolution; recruitment; soft selection

References

  1. Nature. 2000 Jun 1;405(6786):565-7 - PubMed
  2. Science. 2002 Jul 5;297(5578):94-6 - PubMed
  3. Science. 2003 Mar 14;299(5613):1738-40 - PubMed
  4. Ecology. 2006 May;87(5):1104-9 - PubMed
  5. Trends Ecol Evol. 2006 Jun;21(6):341-7 - PubMed
  6. Ecol Lett. 2006 Feb;9(2):142-8 - PubMed
  7. Nature. 2006 Oct 19;443(7113):859-62 - PubMed
  8. Proc Biol Sci. 2007 Apr 22;274(1613):1015-22 - PubMed
  9. Ecology. 2007 May;88(5):1263-77 - PubMed
  10. Ecology. 2007 Jul;88(7):1716-25 - PubMed
  11. Nature. 2008 Apr 17;452(7189):835-9 - PubMed
  12. Proc Biol Sci. 2009 Mar 7;276(1658):919-24 - PubMed
  13. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):952-4 - PubMed
  14. Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9987-94 - PubMed
  15. Mol Ecol. 2010 Mar;19(5):1042-57 - PubMed
  16. J Evol Biol. 2010 Apr;23(4):724-37 - PubMed
  17. Evolution. 2010 Aug;64(8):2450-7 - PubMed
  18. Evolution. 2010 Sep;64(9):2614-28 - PubMed
  19. Mol Ecol Resour. 2010 Jan;10(1):115-28 - PubMed
  20. Genetics. 1990 Apr;124(4):979-93 - PubMed
  21. Evol Appl. 2008 May;1(2):222-38 - PubMed
  22. Genetics. 1989 Aug;122(4):915-22 - PubMed
  23. Oecologia. 1993 Dec;96(3):391-401 - PubMed
  24. Oecologia. 2002 Mar;131(1):89-93 - PubMed
  25. Evolution. 1975 Sep;29(3):465-473 - PubMed
  26. Evolution. 1983 Sep;37(5):895-905 - PubMed
  27. Evolution. 1999 Oct;53(5):1605-1611 - PubMed
  28. Evolution. 1979 Mar;33(1Part2):402-416 - PubMed
  29. Evolution. 1989 May;43(3):485-503 - PubMed
  30. Mol Ecol. 1998 May;7(5):639-55 - PubMed

Publication Types