Display options
Share it on

Radiol Res Pract. 2014;2014:871619. doi: 10.1155/2014/871619. Epub 2014 Dec 08.

Multisite Kinetic Modeling of (13)C Metabolic MR Using [1-(13)C]Pyruvate.

Radiology research and practice

Pedro A Gómez Damián, Jonathan I Sperl, Martin A Janich, Oleksandr Khegai, Florian Wiesinger, Steffen J Glaser, Axel Haase, Markus Schwaiger, Rolf F Schulte, Marion I Menzel

Affiliations

  1. GE Global Research, 85748 Garching bei München, Germany ; Medical Engineering, Tecnológico de Monterrey, 64849 Monterrey, NL, Mexico ; Medical Engineering, Technische Universität München, 85748 Garching bei München, Germany.
  2. GE Global Research, 85748 Garching bei München, Germany.
  3. GE Global Research, 85748 Garching bei München, Germany ; Nuclear Medicine, Technische Universität München, 81675 Munich, Germany ; Chemistry, Technische Universität München, 85748 Garching bei München, Germany.
  4. GE Global Research, 85748 Garching bei München, Germany ; Chemistry, Technische Universität München, 85748 Garching bei München, Germany.
  5. Chemistry, Technische Universität München, 85748 Garching bei München, Germany.
  6. Medical Engineering, Technische Universität München, 85748 Garching bei München, Germany.
  7. Nuclear Medicine, Technische Universität München, 81675 Munich, Germany.

PMID: 25548671 PMCID: PMC4274847 DOI: 10.1155/2014/871619

Abstract

Hyperpolarized (13)C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-(13)C]pyruvate and downstream metabolites [1-(13)C]alanine, [1-(13)C]lactate, and [(13)C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.

References

  1. NMR Biomed. 2012 Nov;25(11):1286-94 - PubMed
  2. NMR Biomed. 2011 Feb;24(2):201-8 - PubMed
  3. Science. 1956 Feb 24;123(3191):309-14 - PubMed
  4. Nat Med. 2007 Nov;13(11):1382-7 - PubMed
  5. PLoS One. 2013 Sep 04;8(9):e71996 - PubMed
  6. J Magn Reson. 2010 Jan;202(1):85-92 - PubMed
  7. J Magn Reson. 1997 Nov;129(1):35-43 - PubMed
  8. Magn Reson Med. 2013 Oct;70(4):943-53 - PubMed
  9. Magn Reson Med. 2012 Dec;68(6):1886-93 - PubMed
  10. NMR Biomed. 2011 Oct;24(8):997-1005 - PubMed
  11. NMR Biomed. 2012 Aug;25(8):993-9 - PubMed
  12. NMR Biomed. 2013 Oct;26(10):1308-20 - PubMed
  13. Neurochem Int. 2004 Dec;45(8):1155-65 - PubMed
  14. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11270-5 - PubMed
  15. Magn Reson Med. 2009 Aug;62(2):307-13 - PubMed
  16. NMR Biomed. 1994 Sep;7(6):278-86 - PubMed
  17. NMR Biomed. 2014 Oct;27(10):1256-65 - PubMed
  18. Magn Reson Med. 2010 Apr;63(4):872-80 - PubMed
  19. NMR Biomed. 2012 Jan;25(1):142-51 - PubMed
  20. Cancer Res. 1964 Sep;24:1318-23 - PubMed
  21. J Biol Chem. 2014 Feb 28;289(9):6212-24 - PubMed
  22. NMR Biomed. 2012 Jul;25(7):925-34 - PubMed
  23. Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18131-6 - PubMed
  24. J Immunol. 1986 Aug 15;137(4):1383-6 - PubMed
  25. J Biol Chem. 2002 Jun 28;277(26):23111-5 - PubMed
  26. Cancer Res. 1984 Oct;44(10):4443-6 - PubMed
  27. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19773-7 - PubMed
  28. Am J Physiol Regul Integr Comp Physiol. 2001 Aug;281(2):R427-33 - PubMed
  29. J Magn Reson. 2012 Dec;225:71-80 - PubMed
  30. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63 - PubMed

Publication Types