Display options
Share it on

PeerJ. 2014 Dec 18;2:e702. doi: 10.7717/peerj.702. eCollection 2014.

Plasticity of gene expression according to salinity in the testis of broodstock and F1 black-chinned tilapia, Sarotherodon melanotheron heudelotii.

PeerJ

Jean-Christophe Avarre, Bruno Guinand, Rémi Dugué, Jacky Cosson, Marc Legendre, Jacques Panfili, Jean-Dominique Durand

Affiliations

  1. Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France.
  2. Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice , Vod?any , Czech Republic.
  3. Ecologie des Systèmes Marins Côtiers , UMR 5119 IRD-UM2-CNRS-IFREMER, Montpellier , France.

PMID: 25548735 PMCID: PMC4273931 DOI: 10.7717/peerj.702

Abstract

The black-chinned tilapia Sarotherodon melanotheron heudelotii Rüppell 1852 (Teleostei, Cichlidae) displays remarkable acclimation capacities. When exposed to drastic changes of salinity, which can be the case in its natural habitat, it develops quick physiological responses and keeps reproducing. The present study focused on the physiological impact of salinity on male reproductive capacities, using gene expression as a proxy of acclimation process. Two series of experimental fish were investigated: the first one was composed of fish maintained in freshwater for several generations and newly acclimated to salinities of 35 and 70, whereas the second one consisted of the descendants of the latter born and were raised under their native salinity. Expression patterns of 43 candidate genes previously identified from the testes of wild males was investigated in the three salinities and two generations. Twenty of them showed significant expression differences between salinities, and their predicted function revealed that most of them are involved in the osmotic tolerance of sperm cells and/or in the maintenance of sperm motility. A high level of expression variation was evidenced, especially for fish maintained in freshwater. In spite of this, gene expression patterns allowed the differentiation between fish raised in freshwater and those maintained in hypersaline water in both generations. Altogether, the results presented here suggest that this high variability of expression is likely to ensure the reproductive success of this species under varying salinities.

Keywords: Acclimation; Fish; Gene expression; Male reproduction; Salinity

References

  1. Rev Reprod. 1997 Jan;2(1):48-54 - PubMed
  2. Comp Biochem Physiol Part D Genomics Proteomics. 2013 Jun;8(2):131-40 - PubMed
  3. Nat Genet. 2002 Oct;32(2):261-6 - PubMed
  4. Proc Biol Sci. 2005 Aug 22;272(1573):1655-62 - PubMed
  5. Mol Biol Rep. 2009 Sep;36(7):2011-8 - PubMed
  6. Experientia. 1994 Jul 15;50(7):626-40 - PubMed
  7. J Comp Physiol B. 2012 Aug;182(6):771-80 - PubMed
  8. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 - PubMed
  9. J Exp Biol. 2008 Nov;211(Pt 22):3636-49 - PubMed
  10. Genome Biol. 2005;6(2):R13 - PubMed
  11. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10859-64 - PubMed
  12. Fish Physiol Biochem. 2012 Apr;38(2):389-99 - PubMed
  13. J Exp Biol. 2004 Jan;207 (Pt 2):337-45 - PubMed
  14. J Exp Biol. 2005 Mar;208(Pt 6):1063-77 - PubMed
  15. Cryobiology. 2008 Dec;57(3):292-6 - PubMed
  16. Gen Comp Endocrinol. 2010 Feb 1;165(3):535-48 - PubMed
  17. Comp Biochem Physiol B Biochem Mol Biol. 2011 Aug;159(4):197-205 - PubMed
  18. Cell Biol Int. 2006 Jan;30(1):1-14 - PubMed
  19. J Exp Biol. 2007 May;210(Pt 9):1584-92 - PubMed
  20. Theriogenology. 2006 Nov;66(8):1894-900 - PubMed
  21. Bioinformatics. 2005 Sep 15;21(18):3674-6 - PubMed
  22. Mar Genomics. 2008 Jun;1(2):37-46 - PubMed
  23. Physiol Biochem Zool. 2013 Jan-Feb;86(1):82-91 - PubMed
  24. Int J Androl. 2012 Apr;35(2):109-24 - PubMed
  25. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  26. Clin Chem. 2009 Apr;55(4):611-22 - PubMed
  27. J Exp Biol. 2013 Jul 15;216(Pt 14):2658-64 - PubMed
  28. PLoS One. 2012;7(1):e29464 - PubMed
  29. J Exp Biol. 2011 Jun 15;214(Pt 12):2096-104 - PubMed
  30. Physiol Genomics. 2013 Sep 3;45(17 ):794-807 - PubMed
  31. OMICS. 2013 Sep;17(9):460-72 - PubMed
  32. Mol Reprod Dev. 2002 May;62(1):57-68 - PubMed
  33. BMC Ecol. 2010 Apr 29;10:11 - PubMed
  34. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5425-30 - PubMed
  35. Mol Ecol Resour. 2014 Jan;14(1):139-49 - PubMed
  36. Clin Chem. 1998 Aug;44(8 Pt 1):1616-20 - PubMed
  37. Biochem Biophys Res Commun. 1998 Dec 18;253(2):415-22 - PubMed
  38. Antioxid Redox Signal. 2013 Nov 1;19(13):1469-80 - PubMed
  39. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14361-6 - PubMed
  40. Annu Rev Physiol. 2010;72:127-45 - PubMed
  41. J Fish Biol. 2012 Apr;80(4):785-801 - PubMed
  42. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31 - PubMed
  43. Gen Comp Endocrinol. 2012 Nov 1;179(2):296-304 - PubMed
  44. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6193-8 - PubMed
  45. BMC Genomics. 2009 Sep 15;10:434 - PubMed
  46. Cancer Res. 2004 Aug 1;64(15):5245-50 - PubMed
  47. PLoS One. 2014 Mar 03;9(3):e90778 - PubMed
  48. Biochim Biophys Acta. 2009 Jan;1793(1):78-88 - PubMed
  49. Cell. 2009 Oct 30;139(3):468-84 - PubMed
  50. Mol Ecol. 2007 Nov;16(22):4674-83 - PubMed

Publication Types