Display options
Share it on

Nature. 2014 Dec 18;516(7531):370-3. doi: 10.1038/nature14004.

Deterministic switching of ferromagnetism at room temperature using an electric field.

Nature

J T Heron, J L Bosse, Q He, Y Gao, M Trassin, L Ye, J D Clarkson, C Wang, Jian Liu, S Salahuddin, D C Ralph, D G Schlom, J Iñiguez, B D Huey, R Ramesh

Affiliations

  1. Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA.
  2. Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA.
  3. Department of Physics, Durham University, Durham DH1 3LE, UK.
  4. 1] Department of Physics, University of California, Berkeley, California 94720, USA [2] School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China.
  5. Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4 10, 8093 Zurich, Switzerland.
  6. Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
  7. Department of Physics, Cornell University, Ithaca, New York 14853, USA.
  8. Department of Physics, University of California, Berkeley, California 94720, USA.
  9. Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, USA.
  10. 1] Department of Physics, Cornell University, Ithaca, New York 14853, USA [2] Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA.
  11. 1] Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA [2] Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA.
  12. Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
  13. 1] Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA [2] Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
  14. 1] Department of Physics, University of California, Berkeley, California 94720, USA [2] Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA [3] Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

PMID: 25519134 DOI: 10.1038/nature14004

Abstract

The technological appeal of multiferroics is the ability to control magnetism with electric field. For devices to be useful, such control must be achieved at room temperature. The only single-phase multiferroic material exhibiting unambiguous magnetoelectric coupling at room temperature is BiFeO3 (refs 4 and 5). Its weak ferromagnetism arises from the canting of the antiferromagnetically aligned spins by the Dzyaloshinskii-Moriya (DM) interaction. Prior theory considered the symmetry of the thermodynamic ground state and concluded that direct 180-degree switching of the DM vector by the ferroelectric polarization was forbidden. Instead, we examined the kinetics of the switching process, something not considered previously in theoretical work. Here we show a deterministic reversal of the DM vector and canted moment using an electric field at room temperature. First-principles calculations reveal that the switching kinetics favours a two-step switching process. In each step the DM vector and polarization are coupled and 180-degree deterministic switching of magnetization hence becomes possible, in agreement with experimental observation. We exploit this switching to demonstrate energy-efficient control of a spin-valve device at room temperature. The energy per unit area required is approximately an order of magnitude less than that needed for spin-transfer torque switching. Given that the DM interaction is fundamental to single-phase multiferroics and magnetoelectrics, our results suggest ways to engineer magnetoelectric switching and tailor technologically pertinent functionality for nanometre-scale, low-energy-consumption, non-volatile magnetoelectronics.

References

  1. J Am Chem Soc. 2012 Feb 29;134(8):3737-47 - PubMed
  2. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 - PubMed
  3. Nature. 2003 Nov 6;426(6962):55-8 - PubMed
  4. Nat Commun. 2014 Mar 03;5:3404 - PubMed
  5. Nat Mater. 2006 Oct;5(10):823-9 - PubMed
  6. Nano Lett. 2009 Apr;9(4):1726-30 - PubMed
  7. Phys Rev Lett. 2009 Dec 18;103(25):257601 - PubMed
  8. Phys Rev Lett. 2014 Feb 7;112(5):057202 - PubMed
  9. Science. 2005 Jul 15;309(5733):391-2 - PubMed
  10. Nat Mater. 2007 Jan;6(1):13-20 - PubMed
  11. Science. 2003 Mar 14;299(5613):1719-22 - PubMed
  12. Science. 2012 May 4;336(6081):555-8 - PubMed
  13. Nat Nanotechnol. 2009 Mar;4(3):158-61 - PubMed
  14. Nat Mater. 2007 May;6(5):348-51 - PubMed
  15. Phys Rev Lett. 2011 Mar 11;106(10):107204 - PubMed
  16. Nat Mater. 2010 Apr;9(4):309-14 - PubMed
  17. Phys Rev Lett. 2010 Jul 9;105(2):027201 - PubMed
  18. Nat Mater. 2011 Nov 13;11(1):64-8 - PubMed
  19. Phys Rev Lett. 2008 Apr 4;100(13):136406 - PubMed
  20. Nature. 2006 Aug 17;442(7104):759-65 - PubMed
  21. Nat Commun. 2011 Nov 01;2:518 - PubMed
  22. Nat Mater. 2014 Apr;13(4):345-51 - PubMed
  23. Phys Rev Lett. 2012 Mar 30;108(13):137203 - PubMed
  24. Nature. 2004 May 27;429(6990):392-5 - PubMed
  25. Phys Rev Lett. 2013 Jun 7;110(23):237601 - PubMed
  26. J Chem Phys. 2012 Feb 21;136(7):074103 - PubMed
  27. Phys Rev Lett. 2008 Apr 25;100(16):167203 - PubMed
  28. Nat Mater. 2010 Sep;9(9):756-61 - PubMed
  29. Phys Rev Lett. 2011 Nov 18;107(21):217202 - PubMed
  30. Nat Mater. 2008 Jun;7(6):478-82 - PubMed
  31. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 - PubMed
  32. Nat Commun. 2013;4:1534 - PubMed

Publication Types