Display options
Share it on

Nature. 2014 Dec 18;516(7531):374-8. doi: 10.1038/nature14026.

Reconstruction and control of a time-dependent two-electron wave packet.

Nature

Christian Ott, Andreas Kaldun, Luca Argenti, Philipp Raith, Kristina Meyer, Martin Laux, Yizhu Zhang, Alexander Blättermann, Steffen Hagstotz, Thomas Ding, Robert Heck, Javier Madroñero, Fernando Martín, Thomas Pfeifer

Affiliations

  1. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  2. Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
  3. Physik-Department, Technische Universität München, 85747 Garching, Germany.
  4. 1] Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain [2] Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain.
  5. 1] Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany [2] Center for Quantum Dynamics, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany.

PMID: 25519135 DOI: 10.1038/nature14026

Abstract

The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes including chemical reactions, and hence there is much interest in developing a detailed understanding of such electron dynamics in the quantum regime. However, there is no exact solution for the quantum three-body problem, and as a result even the minimal system of two active electrons and a nucleus is analytically intractable. This makes experimental measurements of the dynamics of two bound and correlated electrons, as found in the helium atom, an attractive prospect. However, although the motion of single active electrons and holes has been observed with attosecond time resolution, comparable experiments on two-electron motion have so far remained out of reach. Here we show that a correlated two-electron wave packet can be reconstructed from a 1.2-femtosecond quantum beat among low-lying doubly excited states in helium. The beat appears in attosecond transient-absorption spectra measured with unprecedentedly high spectral resolution and in the presence of an intensity-tunable visible laser field. We tune the coupling between the two low-lying quantum states by adjusting the visible laser intensity, and use the Fano resonance as a phase-sensitive quantum interferometer to achieve coherent control of the two correlated electrons. Given the excellent agreement with large-scale quantum-mechanical calculations for the helium atom, we anticipate that multidimensional spectroscopy experiments of the type we report here will provide benchmark data for testing fundamental few-body quantum dynamics theory in more complex systems. They might also provide a route to the site-specific measurement and control of metastable electronic transition states that are at the heart of fundamental chemical reactions.

References

  1. Science. 2004 Feb 6;303(5659):813-5 - PubMed
  2. Phys Rev Lett. 2010 Dec 31;105(26):263003 - PubMed
  3. Proc Natl Acad Sci U S A. 2006 May 2;103(18):6793-8 - PubMed
  4. Phys Rev Lett. 2010 Jul 30;105(5):053002 - PubMed
  5. Phys Rev Lett. 2010 Jul 30;105(5):053001 - PubMed
  6. Annu Rev Phys Chem. 1992;43:497-523 - PubMed
  7. Phys Rev Lett. 2010 Oct 1;105(14):143002 - PubMed
  8. Science. 2013 May 10;340(6133):716-20 - PubMed
  9. Science. 1998 Oct 30;282(5390):919-22 - PubMed
  10. Phys Rev Lett. 2007 Feb 23;98(8):083003 - PubMed
  11. Nature. 2010 Aug 5;466(7307):739-43 - PubMed
  12. Science. 2001 Jun 1;292(5522):1689-92 - PubMed
  13. Phys Rev Lett. 1996 Oct 7;77(15):3086-3089 - PubMed
  14. Science. 2005 Dec 16;310(5755):1787-9 - PubMed
  15. Phys Rev Lett. 2012 Mar 2;108(9):093001 - PubMed
  16. Phys Rev A. 1996 Mar;53(3):1424-1438 - PubMed
  17. Phys Rev Lett. 2011 Mar 25;106(12):123601 - PubMed

Publication Types