Display options
Share it on

Adv Mater. 2015 Feb;27(6):966-84. doi: 10.1002/adma.201403361. Epub 2014 Dec 09.

Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties.

Advanced materials (Deerfield Beach, Fla.)

James L Suter, Derek Groen, Peter V Coveney

Affiliations

  1. Centre for Computational Science, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

PMID: 25488829 PMCID: PMC4368376 DOI: 10.1002/adma.201403361

Abstract

A quantitative description is presented of the dynamical process of polymer intercalation into clay tactoids and the ensuing aggregation of polymer-entangled tactoids into larger structures, obtaining various characteristics of these nanocomposites, including clay-layer spacings, out-of-plane clay-sheet bending energies, X-ray diffractograms, and materials properties. This model of clay-polymer interactions is based on a three-level approach, which uses quantum mechanical and atomistic descriptions to derive a coarse-grained yet chemically specific representation that can resolve processes on hitherto inaccessible length and time scales. The approach is applied to study collections of clay mineral tactoids interacting with two synthetic polymers, poly(ethylene glycol) and poly(vinyl alcohol). The controlled behavior of layered materials in a polymer matrix is centrally important for many engineering and manufacturing applications. This approach opens up a route to computing the properties of complex soft materials based on knowledge of their chemical composition, molecular structure, and processing conditions.

© 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: clay-polymer nanocomposites; intercalation dynamics; materials properties; multiscale modeling; tactic self-assembly

References

  1. Chem Soc Rev. 2008 Mar;37(3):568-94 - PubMed
  2. J Chem Theory Comput. 2009 Dec 8;5(12):3211-23 - PubMed
  3. Nano Lett. 2007 Jul;7(7):1923-8 - PubMed
  4. J Am Chem Soc. 2008 Sep 17;130(37):12485-95 - PubMed
  5. Proteins. 2010 Apr;78(5):1266-81 - PubMed
  6. J Phys Chem B. 2006 Mar 2;110(8):3674-84 - PubMed
  7. J Phys Chem B. 2007 Mar 8;111(9):2143-51 - PubMed
  8. Nature. 2003 Jun 26;423(6943):925-6 - PubMed
  9. Adv Mater. 2013 Aug 14;25(30):4069-86 - PubMed
  10. Bioinspir Biomim. 2010 Sep;5(3):035001 - PubMed
  11. Curr Opin Struct Biol. 2005 Apr;15(2):144-50 - PubMed
  12. Nat Mater. 2004 Sep;3(9):638-44 - PubMed
  13. Philos Trans A Math Phys Eng Sci. 2014 Aug 6;372(2021):null - PubMed
  14. Curr Opin Struct Biol. 2005 Oct;15(5):586-92 - PubMed
  15. Langmuir. 2013 Feb 12;29(6):1754-65 - PubMed
  16. J Chem Phys. 2006 Jun 14;124(22):224713 - PubMed
  17. J Phys Chem B. 2005 Feb 24;109(7):2469-73 - PubMed
  18. Small. 2009 Aug 17;5(16):1816-20 - PubMed
  19. Adv Mater. 2011 Nov 23;23(44):5229-36 - PubMed
  20. Phys Rev Lett. 2001 May 28;86(22):5073-5 - PubMed
  21. Proteins. 1988;4(1):31-47 - PubMed
  22. Philos Trans A Math Phys Eng Sci. 2014 Aug 6;372(2021):null - PubMed
  23. J Chem Phys. 2012 Oct 28;137(16):164106 - PubMed
  24. Acc Chem Res. 2007 Nov;40(11):1193-9 - PubMed
  25. Eur Phys J E Soft Matter. 2012 Sep;35(9):97 - PubMed
  26. Langmuir. 2008 May 20;24(10):5599-607 - PubMed
  27. Eur Phys J E Soft Matter. 2009 Feb;28(2):221-9 - PubMed
  28. J Chem Theory Comput. 2008 May;4(5):819-34 - PubMed

Publication Types