Display options
Share it on

Front Cell Neurosci. 2014 Dec 02;8:403. doi: 10.3389/fncel.2014.00403. eCollection 2014.

Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet.

Frontiers in cellular neuroscience

Juan A Orellana, Dolores Busso, Gigliola Ramírez, Marlys Campos, Attilio Rigotti, Jaime Eugenín, Rommy von Bernhardi

Affiliations

  1. Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile.
  2. Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile.
  3. Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile.

PMID: 25520621 PMCID: PMC4251442 DOI: 10.3389/fncel.2014.00403

Abstract

Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter release through Cx43 and Panx1 unopposed channels may participate in brain alterations observed in offspring of mothers exposed to tobacco smoke during pregnancy.

Keywords: brain; connexins; fat diet; glia; hemichannels; nicotine; pannexins

References

  1. J Physiol. 2010 Oct 15;588(Pt 20):3901-20 - PubMed
  2. Vet Rec. 1985 Apr 20;116(16):431-6 - PubMed
  3. Brain Behav Immun. 2010 Aug;24(6):881-97 - PubMed
  4. ASN Neuro. 2012 Apr 18;4(3):null - PubMed
  5. Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22659-64 - PubMed
  6. Pharmacol Biochem Behav. 1994 Apr;47(4):889-900 - PubMed
  7. Glia. 2013 Dec;61(12):2023-37 - PubMed
  8. Trends Neurosci. 2009 Aug;32(8):421-31 - PubMed
  9. J Biol Chem. 2013 May 17;288(20):14599-611 - PubMed
  10. Obstet Gynecol. 1984 Nov;64(5):601-7 - PubMed
  11. Biochim Biophys Acta. 2013 Jan;1828(1):35-50 - PubMed
  12. Brain Res. 2006 Aug 4;1103(1):88-98 - PubMed
  13. Brain. 2010 Aug;133(Pt 8):2264-80 - PubMed
  14. FEBS Lett. 2006 Jan 9;580(1):239-44 - PubMed
  15. J Neuroinflammation. 2011 Sep 24;8:121 - PubMed
  16. Int J Epidemiol. 2007 Aug;36(4):825-32 - PubMed
  17. Dev Pharmacol Ther. 1985;8(6):384-95 - PubMed
  18. J Pharmacol Exp Ther. 2002 Jan;300(1):124-33 - PubMed
  19. Philos Trans R Soc Lond B Biol Sci. 2009 Sep 12;364(1529):2527-35 - PubMed
  20. J Neurochem. 2009 Dec;111(6):1383-97 - PubMed
  21. Am J Physiol Cell Physiol. 2008 Sep;295(3):C761-7 - PubMed
  22. Brain Res Dev Brain Res. 1997 Aug 18;102(1):117-26 - PubMed
  23. J Neurochem. 2008 Jul;106(1):475-85 - PubMed
  24. Birth Defects Res C Embryo Today. 2008 Mar;84(1):30-44 - PubMed
  25. Neuropsychopharmacology. 2006 Jul;31(7):1550-61 - PubMed
  26. J Neurochem. 2011 Sep;118(5):826-40 - PubMed
  27. Glia. 2010 Feb;58(3):329-43 - PubMed
  28. Brain Res Rev. 2010 May;63(1-2):93-102 - PubMed
  29. Antioxid Redox Signal. 2009 Feb;11(2):369-99 - PubMed
  30. Neurotoxicol Teratol. 1998 Jul-Aug;20(4):465-73 - PubMed
  31. EMBO J. 2006 Nov 1;25(21):5071-82 - PubMed
  32. Neurotoxicol Teratol. 1994 Jul-Aug;16(4):411-21 - PubMed
  33. Mediators Inflamm. 2013;2013:216402 - PubMed
  34. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240-4 - PubMed
  35. Am J Med Genet B Neuropsychiatr Genet. 2010 Oct 5;153B(7):1350-4 - PubMed
  36. J Mol Neurosci. 2012 Jul;47(3):533-45 - PubMed
  37. Glia. 2012 Jan;60(1):53-68 - PubMed
  38. Life Sci. 1991;49(9):665-70 - PubMed
  39. Brain Res Bull. 1989 Sep;23(3):187-92 - PubMed
  40. J Biol Chem. 2006 Jul 28;281(30):21362-8 - PubMed
  41. FASEB J. 2012 Sep;26(9):3649-57 - PubMed
  42. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):495-500 - PubMed
  43. Cell Commun Adhes. 2008 May;15(1):207-18 - PubMed
  44. Neurobiol Dis. 2012 Mar;45(3):954-61 - PubMed
  45. Pflugers Arch. 2010 Jul;460(2):525-42 - PubMed
  46. Arterioscler Thromb Vasc Biol. 2006 Jan;26(1):143-9 - PubMed
  47. Curr Drug Targets Inflamm Allergy. 2005 Jun;4(3):335-40 - PubMed
  48. J Neurosci. 2007 Dec 12;27(50):13781-92 - PubMed
  49. J Neuroimmunol. 2010 Jun;223(1-2):31-8 - PubMed
  50. J Neurosci. 2008 Jan 16;28(3):681-95 - PubMed
  51. Brain Behav Immun. 2011 Nov;25(8):1637-48 - PubMed
  52. J Neurosci. 2008 Dec 17;28(51):13907-17 - PubMed
  53. FEBS Lett. 2014 Apr 17;588(8):1205-11 - PubMed
  54. Science. 2008 Dec 5;322(5907):1555-9 - PubMed
  55. Neuropharmacology. 2013 Dec;75:506-16 - PubMed
  56. Neuropsychopharmacology. 2011 Apr;36(5):1114-25 - PubMed
  57. Science. 2006 May 12;312(5775):924-7 - PubMed
  58. Mol Cell Neurosci. 2010 Sep;45(1):37-46 - PubMed
  59. Glia. 2010 Nov 15;58(15):1775-81 - PubMed
  60. Nat Rev Neurosci. 2007 Jan;8(1):57-69 - PubMed
  61. J Neurosci. 2009 May 27;29(21):7092-7 - PubMed
  62. J Fam Pract. 1995 Apr;40(4):385-94 - PubMed
  63. J Neurosci. 2011 Jan 12;31(2):414-25 - PubMed
  64. Exp Eye Res. 2006 Aug;83(2):357-66 - PubMed
  65. Sci Signal. 2012 Jan 24;5(208):ra8 - PubMed
  66. Nat Med. 2012 Mar 18;18(4):600-4 - PubMed
  67. Biol Cell. 2002 Nov;94(7-8):457-75 - PubMed
  68. Nat Rev Neurosci. 2006 Jun;7(6):423-36 - PubMed
  69. Pharmacol Rev. 2011 Sep;63(3):471-538 - PubMed
  70. Prev Med. 1987 Sep;16(5):597-606 - PubMed
  71. Front Physiol. 2014 Feb 11;5:23 - PubMed
  72. Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1518-29 - PubMed
  73. PLoS One. 2014 Apr 15;9(4):e95023 - PubMed
  74. Neurol Sci. 2013 Aug;34(8):1355-65 - PubMed
  75. Behav Neurosci. 2005 Feb;119(1):293-301 - PubMed
  76. J Neurosci. 2011 Mar 30;31(13):4962-77 - PubMed

Publication Types