Display options
Share it on

Front Comput Neurosci. 2014 Dec 01;8:157. doi: 10.3389/fncom.2014.00157. eCollection 2014.

A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing.

Frontiers in computational neuroscience

William Lennon, Robert Hecht-Nielsen, Tadashi Yamazaki

Affiliations

  1. Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
  2. Graduate School of Informatics and Engineering, The University of Electro-Communications Chofu, Japan.

PMID: 25520646 PMCID: PMC4249458 DOI: 10.3389/fncom.2014.00157

Abstract

While the anatomy of the cerebellar microcircuit is well-studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs) form with the molecular layer interneurons (MLIs)-the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1) spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2) adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

Keywords: Purkinje cells; cerebellum; inter-spike interval; irregular firing; molecular layer interneurons

References

  1. Neuron. 1994 Jan;12(1):117-26 - PubMed
  2. Eur J Neurosci. 2013 Sep;38(6):2917-32 - PubMed
  3. J Neurophysiol. 1994 Jan;71(1):375-400 - PubMed
  4. J Neurosci. 2004 May 12;24(19):4510-7 - PubMed
  5. Learn Mem. 1997 Mar-Apr;3(6):475-502 - PubMed
  6. J Physiol. 1998 May 15;509 ( Pt 1):221-32 - PubMed
  7. J Neurosci. 2009 Jan 14;29(2):381-92 - PubMed
  8. Nat Neurosci. 2009 Aug;12(8):1042-9 - PubMed
  9. J Neurosci. 2000 Jul 15;20(14):5516-25 - PubMed
  10. Brain Res. 1993 Apr 23;609(1-2):262-8 - PubMed
  11. PLoS One. 2012;7(5):e37031 - PubMed
  12. Nat Rev Neurosci. 2009 Sep;10(9):670-81 - PubMed
  13. PLoS Comput Biol. 2010 Apr 29;6(4):e1000768 - PubMed
  14. Neuron. 2010 May 27;66(4):550-9 - PubMed
  15. Trends Neurosci. 2010 Nov;33(11):524-32 - PubMed
  16. J Neurophysiol. 1999 Oct;82(4):1697-709 - PubMed
  17. J Neurosci. 2014 Feb 5;34(6):2321-30 - PubMed
  18. J Physiol. 2004 Feb 1;554(Pt 3):707-20 - PubMed
  19. Nature. 2000 May 25;405(6785):454-8 - PubMed
  20. Nat Neurosci. 2006 Mar;9(3):389-97 - PubMed
  21. Neuron. 2004 Sep 2;43(5):745-57 - PubMed
  22. Biol Cybern. 1982;45(3):195-206 - PubMed
  23. J Physiol. 1969 Jun;202(2):437-70 - PubMed
  24. J Neurosci. 2005 Aug 31;25(35):7979-85 - PubMed
  25. J Neurosci. 2011 Jan 12;31(2):712-24 - PubMed
  26. Neuron. 1997 Sep;19(3):665-78 - PubMed
  27. Nat Rev Neurosci. 2010 Jan;11(1):30-43 - PubMed
  28. Z Anat Entwicklungsgesch. 1971;134(2):200-34 - PubMed
  29. Front Cell Neurosci. 2010 Aug 27;4:null - PubMed
  30. Front Neurosci. 2009 Sep 15;3(2):192-7 - PubMed
  31. Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14901-6 - PubMed
  32. Nat Rev Neurosci. 2012 Sep;13(9):619-35 - PubMed
  33. J Neurosci. 2003 Nov 19;23(33):10503-14 - PubMed
  34. Nature. 2011 Dec 25;481(7382):502-5 - PubMed
  35. J Physiol. 1992 Nov;457:329-54 - PubMed
  36. J Neurosci. 2003 Oct 22;23(29):9620-31 - PubMed
  37. J Neurosci. 2007 Mar 7;27(10):2493-502 - PubMed
  38. J Neurophysiol. 1994 Jan;71(1):401-19 - PubMed
  39. J Neurosci. 1999 Mar 1;19(5):1663-74 - PubMed
  40. Brain Res. 1971 Sep 10;32(1):1-13 - PubMed
  41. PLoS One. 2012;7(3):e33319 - PubMed
  42. Eur J Neurosci. 1998 Jan;10(1):95-105 - PubMed
  43. Neuron. 2010 Nov 18;68(4):763-75 - PubMed
  44. J Neurosci. 1997 Jun 15;17(12):4517-26 - PubMed
  45. J Neurosci. 1989 Jun;9(6):2141-50 - PubMed
  46. J Neurophysiol. 2007 Jan;97(1):248-63 - PubMed
  47. Nat Neurosci. 2009 Apr;12 (4):463-73 - PubMed
  48. Neuroscience. 2006 May 12;139(2):767-77 - PubMed
  49. J Comp Neurol. 1998 Apr 13;393(3):353-73 - PubMed
  50. PLoS Comput Biol. 2012;8(4):e1002448 - PubMed
  51. Neuron. 2002 May 30;34(5):797-806 - PubMed
  52. Brain Res. 1989 Jan 9;476(2):279-90 - PubMed
  53. J Neurosci. 1999 May 1;19(9):3298-306 - PubMed
  54. J Neurosci. 2008 Oct 15;28(42):10549-60 - PubMed

Publication Types