Display options
Share it on

Front Psychol. 2014 Dec 03;5:1386. doi: 10.3389/fpsyg.2014.01386. eCollection 2014.

Among three different executive functions, general executive control ability is a key predictor of decision making under objective risk.

Frontiers in psychology

Johannes Schiebener, Elisa Wegmann, Bettina Gathmann, Christian Laier, Mirko Pawlikowski, Matthias Brand

Affiliations

  1. General Psychology: Cognition, University of Duisburg-Essen Duisburg, Germany.
  2. General Psychology: Cognition, University of Duisburg-Essen Duisburg, Germany ; Erwin L. Hahn Institute for Magnetic Resonance Imaging Essen, Germany.

PMID: 25520690 PMCID: PMC4253823 DOI: 10.3389/fpsyg.2014.01386

Abstract

Executive functioning is supposed to have an important role in decision making under risk. Several studies reported that more advantageous decision-making behavior was accompanied by better performance in tests of executive functioning and that the decision-making process was accompanied by activations in prefrontal and subcortical brain regions associated with executive functioning. However, to what extent different components of executive functions contribute to decision making is still unclear. We tested direct and indirect effects of three executive functions on decision-making performance in a laboratory gambling task, the Game of Dice Task (GDT). Using Brand's model of decisions under risk (2006) we tested seven structural equation models with three latent variables that represent executive functions supposed to be involved in decision making. The latent variables were general control (represented by the general ability to exert attentional and behavioral self-control that is in accordance with task goals despite interfering information), concept formation (represented by categorization, rule detection, and set maintenance), and monitoring (represented by supervision of cognition and behavior). The seven models indicated that only the latent dimension general control had a direct effect on decision making under risk. Concept formation and monitoring only contributed in terms of indirect effects, when mediated by general control. Thus, several components of executive functioning seem to be involved in decision making under risk. However, general control functions seem to have a key role. They may be important for implementing the calculative and cognitively controlled processes involved in advantageous decision making under risk.

Keywords: Game of Dice Task; decisions under risk; executive functions; monitoring; self-control; structural equation model

References

  1. Acta Psychol (Amst). 1966;25(1):36-93 - PubMed
  2. Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1405-11; discussion 1411-2 - PubMed
  3. Neuropsychologia. 2009 Nov;47(13):2882-90 - PubMed
  4. Cogn Psychol. 2000 Aug;41(1):49-100 - PubMed
  5. Appetite. 2010 Feb;54(1):84-92 - PubMed
  6. Brain Cogn. 2009 Mar;69(2):279-90 - PubMed
  7. Neuropsychologia. 2000;38(6):848-63 - PubMed
  8. Eur Arch Psychiatry Clin Neurosci. 2013 Apr;263(3):249-57 - PubMed
  9. J Clin Exp Neuropsychol. 2013;35(1):9-23 - PubMed
  10. Brain. 2002 Mar;125(Pt 3):624-39 - PubMed
  11. J Exp Psychol Gen. 2003 Dec;132(4):566-94 - PubMed
  12. Neuron. 2013 Jul 24;79(2):217-40 - PubMed
  13. Curr Dir Psychol Sci. 2012 Feb;21(1):8-14 - PubMed
  14. Neuropsychologia. 2002;40(3):271-81 - PubMed
  15. Front Neurosci. 2012 Jul 12;6:105 - PubMed
  16. Front Neurosci. 2008 Jul 07;2(1):79-85 - PubMed
  17. Neurocase. 2004 Dec;10(6):420-5 - PubMed
  18. Arch Clin Neuropsychol. 2004 Mar;19(2):203-14 - PubMed
  19. Eur J Neurol. 2010 Jan;17(1):97-102 - PubMed
  20. Trends Cogn Sci. 2012 Feb;16(2):122-8 - PubMed
  21. J Clin Exp Neuropsychol. 2011 Nov;33(9):1025-39 - PubMed
  22. Neuropsychologia. 2007 Apr 9;45(8):1632-41 - PubMed
  23. J Gen Psychol. 1948 Jul;39:15-22 - PubMed
  24. Neural Netw. 2006 Oct;19(8):1266-76 - PubMed
  25. Neuroimage. 2005 Apr 1;25(2):600-6 - PubMed
  26. Cogn Process. 2012 Nov;13(4):321-32 - PubMed
  27. Gerontology. 2010;56(3):319-24 - PubMed
  28. Br Med Bull. 2003;65:49-59 - PubMed
  29. J Exp Psychol Gen. 2008 May;137(2):201-25 - PubMed
  30. Nat Rev Neurosci. 2012 Jul 11;13(8):572-86 - PubMed
  31. Mov Disord. 2010 Nov 15;25(15):2634-40 - PubMed
  32. Clin Neuropsychol. 1999 Aug;13(3):328-47 - PubMed
  33. Arch Clin Neuropsychol. 2006 Jan;21(1):23-8 - PubMed
  34. Psychopharmacology (Berl). 2007 Mar;190(4):517-30 - PubMed
  35. Psychol Sci. 2004 Sep;15(9):610-5 - PubMed
  36. J Neurosci. 1999 Oct 15;19(20):9029-38 - PubMed
  37. Neuroimage. 2006 Apr 15;30(3):1038-49 - PubMed
  38. Ann N Y Acad Sci. 1995 Dec 15;769:191-211 - PubMed
  39. Cortex. 2003 Sep-Dec;39(4-5):871-95 - PubMed
  40. Arch Clin Neuropsychol. 2011 Dec;26(8):706-17 - PubMed
  41. J Clin Exp Neuropsychol. 2009 Nov;31(8):984-98 - PubMed
  42. Neuropsychologia. 2008;46(7):2043-55 - PubMed
  43. Neuropsychol Rev. 2007 Sep;17(3):213-33 - PubMed
  44. Nat Rev Neurol. 2010 Nov;6(11):611-23 - PubMed
  45. Science. 1999 Mar 12;283(5408):1657-61 - PubMed
  46. Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1413-20 - PubMed
  47. Cogn Process. 2008 Aug;9(3):159-73 - PubMed
  48. Cortex. 1976 Dec;12(4):313-24 - PubMed
  49. Sleep. 2011 Jan 01;34(1):99-104 - PubMed
  50. Science. 1997 Feb 28;275(5304):1293-5 - PubMed
  51. Neuropsychology. 2005 May;19(3):267-77 - PubMed
  52. J Pers Soc Psychol. 1986 Dec;51(6):1173-82 - PubMed
  53. Int J Geriatr Psychiatry. 2004 Feb;19(2):136-43 - PubMed
  54. Neuroimage. 2005 Apr 15;25(3):888-98 - PubMed
  55. Behav Brain Res. 2005 Sep 8;163(2):219-26 - PubMed
  56. Exp Brain Res. 2008 Jun;187(4):641-50 - PubMed
  57. Psychol Sci. 2006 Feb;17(2):172-9 - PubMed

Publication Types