Display options
Share it on

Beilstein J Nanotechnol. 2014 Nov 06;5:2026-35. doi: 10.3762/bjnano.5.211. eCollection 2014.

Electrostatic interplay: The interaction triangle of polyamines, silicic acid, and phosphate studied through turbidity measurements, silicomolybdic acid test, and (29)Si NMR spectroscopy.

Beilstein journal of nanotechnology

Anne Jantschke, Katrin Spinde, Eike Brunner

Affiliations

  1. TU Dresden, Fachrichtung Chemie und Lebensmittelchemie, Bioanalytische Chemie, 01062 Dresden, Germany.

PMID: 25551030 PMCID: PMC4273220 DOI: 10.3762/bjnano.5.211

Abstract

The discovery of long-chain polyamines as biomolecules that are tightly associated to biosilica in diatom cell walls has inspired numerous in vitro studies aiming to characterize polyamine-silica interactions. The determination of these interactions at the molecular level is of fundamental interest on one hand for the understanding of cell wall biogenesis in diatoms and on the other hand for designing bioinspired materials synthesis approaches. The present contribution deals with the influence of amines and polyamines upon the initial self-assembly processes taking place during polyamine-mediated silica formation in solution. The influence of phosphate upon these processes is studied. For this purpose, sodium metasilicate solutions containing additives such as polyallylamine, allylamine and others in the presence/absence of phosphate were investigated. The analyses are based mainly on turbidity measurements yielding information about the early aggregation steps which finally give rise to the formation and precipitation of silica.

Keywords: 29Si NMR; phosphate; self-assembly; silica–polyamine interactions; silicomolybdic acid test; turbidity measurements

References

  1. Angew Chem Int Ed Engl. 2003 Nov 3;42(42):5192-5 - PubMed
  2. FEBS Lett. 2005 Jul 4;579(17):3765-9 - PubMed
  3. Biomacromolecules. 2011 May 9;12(5):1772-80 - PubMed
  4. J Am Chem Soc. 2014 Mar 19;136(11):4236-44 - PubMed
  5. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14133-8 - PubMed
  6. Chembiochem. 2007 Sep 24;8(14):1729-35 - PubMed
  7. Chembiochem. 2011 Jun 14;12(9):1362-6 - PubMed
  8. Science. 2002 Oct 18;298(5593):584-6 - PubMed
  9. Chembiochem. 2008 May 23;9(8):1187-94 - PubMed
  10. Phys Chem Chem Phys. 2005 Jul 21;7(14):2812-5 - PubMed
  11. J Colloid Interface Sci. 2003 Jul 15;263(2):522-7 - PubMed
  12. J Biol Chem. 2004 Oct 8;279(41):42993-9 - PubMed
  13. Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):5963-8 - PubMed
  14. J Am Chem Soc. 2010 Jan 27;132(3):1023-31 - PubMed
  15. Org Biomol Chem. 2011 Aug 7;9(15):5482-6 - PubMed
  16. Angew Chem Int Ed Engl. 2002 May 3;41(9):1543-6 - PubMed
  17. J Am Chem Soc. 2009 Dec 30;131(51):18358-65 - PubMed
  18. Chembiochem. 2003 Apr 4;4(4):251-9 - PubMed
  19. Chem Commun (Camb). 2003 Dec 21;(24):2994-5 - PubMed
  20. Chembiochem. 2006 Sep;7(9):1419-27 - PubMed
  21. Science. 1999 Nov 5;286(5442):1129-32 - PubMed
  22. Angew Chem Int Ed Engl. 2004 Apr 19;43(17):2251-4 - PubMed
  23. Cell Biochem Biophys. 2008;50(1):23-39 - PubMed

Publication Types