Display options
Share it on

Beilstein J Nanotechnol. 2014 Dec 05;5:2346-62. doi: 10.3762/bjnano.5.244. eCollection 2014.

Inorganic Janus particles for biomedical applications.

Beilstein journal of nanotechnology

Isabel Schick, Steffen Lorenz, Dominik Gehrig, Stefan Tenzer, Wiebke Storck, Karl Fischer, Dennis Strand, Frédéric Laquai, Wolfgang Tremel

Affiliations

  1. Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany.
  2. Medizinische Klinik und Polyklinik, Universitätsmedizin der Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55131 Mainz, Germany.
  3. Max-Planck-Institut für Polymerforschung, Max-Planck-Forschungsgruppe für Organische Optoelektronik, Ackermannweg 10, 55128 Mainz, Germany.
  4. Institut für Physikalische Chemie, Johannes Gutenberg-Universität, Jakob-Welder-Weg 11, 55128 Mainz, Germany.

PMID: 25551063 PMCID: PMC4273258 DOI: 10.3762/bjnano.5.244

Abstract

Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic-inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum.

Keywords: Janus particles; MRI; Multi-photon); bioimaging (CT; hetero-nanoparticles; protein corona; synthesis

References

  1. Angew Chem Int Ed Engl. 2008;47(1):173-6 - PubMed
  2. Chem Rev. 2013 Jul 10;113(7):5194-261 - PubMed
  3. Nano Lett. 2005 Feb;5(2):379-82 - PubMed
  4. Langmuir. 2012 May 22;28(20):7598-613 - PubMed
  5. Nat Mater. 2004 Dec;3(12):891-5 - PubMed
  6. Langmuir. 2006 Apr 25;22(9):4357-62 - PubMed
  7. Nanoscale. 2014;6(3):1823-32 - PubMed
  8. Nat Biotechnol. 2003 Nov;21(11):1369-77 - PubMed
  9. Chem Commun (Camb). 2014 Jan 7;50(2):174-6 - PubMed
  10. Nanotechnology. 2012 Aug 10;23(31):315102 - PubMed
  11. J Am Chem Soc. 2005 Apr 13;127(14):4990-1 - PubMed
  12. Science. 2006 Apr 21;312(5772):420-4 - PubMed
  13. Small. 2009 Jul;5(14):1600-30 - PubMed
  14. Langmuir. 2006 Jun 6;22(12):5227-9 - PubMed
  15. Nanoscale. 2012 Aug 7;4(15):4571-7 - PubMed
  16. J Am Chem Soc. 2003 Jul 2;125(26):7790-1 - PubMed
  17. J Am Chem Soc. 2011 Aug 17;133(32):12624-31 - PubMed
  18. Chem Mater. 2011 Apr 12;23(7):1985-1992 - PubMed
  19. Nano Lett. 2009 Apr;9(4):1493-6 - PubMed
  20. Nanoscale. 2012 Aug 7;4(15):4680-6 - PubMed
  21. Nanotechnology. 2011 Apr 15;22(15):155101 - PubMed
  22. ACS Nano. 2011 Apr 26;5(4):3043-51 - PubMed
  23. Curr Opin Chem Biol. 2002 Oct;6(5):642-50 - PubMed
  24. Nanotechnology. 2010 Mar 12;21(10):105105 - PubMed
  25. Opt Express. 2009 Jul 6;17(14):11350-9 - PubMed
  26. Langmuir. 2014 Jan 14;30(1):227-33 - PubMed
  27. Adv Mater. 2010 Mar 12;22(10):1060-71 - PubMed
  28. Nanoscale. 2010 Sep;2(9):1746-55 - PubMed
  29. Science. 1990 Apr 6;248(4951):73-6 - PubMed
  30. J Nanobiotechnology. 2012 Jun 25;10:27 - PubMed
  31. Chem Commun (Camb). 2011 Aug 21;47(31):8898-900 - PubMed
  32. Angew Chem Int Ed Engl. 2009;48(50):9477-80 - PubMed
  33. J Am Chem Soc. 2012 Apr 11;134(14):6244-56 - PubMed
  34. Adv Mater. 2012 May 2;24(17):2310-4 - PubMed
  35. J Am Chem Soc. 2004 Apr 21;126(15):4943-50 - PubMed
  36. Phys Chem Chem Phys. 2011 Feb 21;13(7):2512-6 - PubMed
  37. Small. 2008 Oct;4(10):1635-9 - PubMed
  38. Chem Soc Rev. 2012 Apr 7;41(7):2539-44 - PubMed
  39. ACS Appl Mater Interfaces. 2012 Jan;4(1):251-60 - PubMed
  40. Angew Chem Int Ed Engl. 2004 Nov 19;43(45):6042-108 - PubMed
  41. Rep Prog Phys. 2013 Apr;76(4):046401 - PubMed
  42. Chem Rev. 2004 Jan;104(1):293-346 - PubMed
  43. ACS Nano. 2008 May;2(5):889-96 - PubMed
  44. Ann Anat. 2006 Sep;188(5):395-409 - PubMed
  45. Soft Matter. 2008 Mar 20;4(4):663-668 - PubMed
  46. Br J Radiol. 2006 Mar;79(939):248-53 - PubMed
  47. Langmuir. 2006 Nov 7;22(23):9495-9 - PubMed
  48. ACS Nano. 2013 Jan 22;7(1):857-66 - PubMed
  49. Nat Biotechnol. 2003 Oct;21(10):1192-9 - PubMed
  50. Nanotechnology. 2009 Mar 18;20(11):115103 - PubMed
  51. J Am Chem Soc. 2004 May 12;126(18):5664-5 - PubMed
  52. Nano Lett. 2005 Oct;5(10):2044-9 - PubMed
  53. Adv Drug Deliv Rev. 2008 Aug 17;60(11):1252-65 - PubMed
  54. ACS Nano. 2012 Jul 24;6(7):6356-63 - PubMed
  55. Nat Chem. 2011 Nov 13;4(1):37-44 - PubMed
  56. J Am Chem Soc. 2005 May 25;127(20):7480-8 - PubMed
  57. Nat Mater. 2005 Oct;4(10):759-63 - PubMed
  58. J Am Chem Soc. 2006 Jul 26;128(29):9408-12 - PubMed
  59. Angew Chem Int Ed Engl. 2012 Feb 6;51(6):1348-52 - PubMed
  60. Nano Lett. 2009 Dec;9(12):4434-40 - PubMed
  61. ACS Nano. 2011 Sep 27;5(9):7155-67 - PubMed
  62. J Am Chem Soc. 2005 Jan 12;127(1):34-5 - PubMed
  63. Langmuir. 2008 Sep 16;24(18):10073-7 - PubMed
  64. Nano Lett. 2007 Aug;7(8):2422-7 - PubMed
  65. Nano Lett. 2009 Dec;9(12):4544-7 - PubMed
  66. Nanoscale. 2009 Nov;1(2):225-8 - PubMed
  67. Nano Lett. 2006 Apr;6(4):875-81 - PubMed
  68. Adv Mater. 2009;21(30):3045-3052 - PubMed
  69. Nano Lett. 2004 Aug;4(8):1407-1413 - PubMed
  70. Langmuir. 2007 Aug 14;23(17):9050-6 - PubMed
  71. Nano Lett. 2009 Mar;9(3):1080-4 - PubMed
  72. Angew Chem Int Ed Engl. 2010 Feb 8;49(7):1271-4 - PubMed
  73. J Am Chem Soc. 2014 Feb 12;136(6):2473-83 - PubMed
  74. Angew Chem Int Ed Engl. 2007;46(30):5754-6 - PubMed
  75. Chem Commun (Camb). 2007 Mar 28;(12):1203-14 - PubMed
  76. Nat Rev Immunol. 2002 Nov;2(11):872-80 - PubMed
  77. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2050-5 - PubMed
  78. J Am Chem Soc. 2009 Apr 1;131(12):4216-7 - PubMed

Publication Types