Display options
Share it on

Am J Cancer Res. 2014 Nov 19;4(6):824-37. eCollection 2014.

Establishment of genetically diverse patient-derived xenografts of colorectal cancer.

American journal of cancer research

Danielle M Burgenske, David J Monsma, Dawna Dylewski, Stephanie B Scott, Aaron D Sayfie, Donald G Kim, Martin Luchtefeld, Katie R Martin, Paul Stephenson, Galen Hostetter, Nadav Dujovny, Jeffrey P MacKeigan

Affiliations

  1. Laboratory of Systems Biology, Van Andel Research Institute Grand Rapids, MI 49503, USA ; Van Andel Institute Graduate School Grand Rapids, MI 49503, USA.
  2. Preclinical Therapeutics, Van Andel Research Institute Grand Rapids, MI 49503, USA.
  3. Laboratory of Systems Biology, Van Andel Research Institute Grand Rapids, MI 49503, USA.
  4. Ferguson-Blodgett Digestive Disease Institute, Spectrum Health Medical Group Grand Rapids, MI 49503, USA.
  5. Department of Statistics, Grand Valley State University Allendale, MI 49401, USA.
  6. Laboratory of Analytical Pathology, Van Andel Research Institute Grand Rapids, MI 49503, USA.

PMID: 25520871 PMCID: PMC4266715

Abstract

Preclinical compounds tested in animal models often show limited efficacy when transitioned into human clinical trials. As a result, many patients are stratified into treatment regimens that have little impact on their disease. In order to create preclinical models that can more accurately predict tumor responses, we established patient-derived xenograft (PDX) models of colorectal cancer (CRC). Surgically resected tumor specimens from colorectal cancer patients were implanted subcutaneously into athymic nude mice. Following successful establishment, fourteen models underwent further evaluation to determine whether these models exhibit heterogeneity, both at the cellular and genetic level. Histological review revealed properties not found in CRC cell lines, most notably in overall architecture (predominantly columnar epithelium with evidence of gland formation) and the presence of mucin-producing cells. Custom CRC gene panels identified somatic driver mutations in each model, and therapeutic efficacy studies in tumor-bearing mice were designed to determine how models with known mutations respond to PI3K, mTOR, or MAPK inhibitors. Interestingly, MAPK pathway inhibition drove tumor responses across most models tested. Noteworthy, the MAPK inhibitor PD0325901 alone did not significantly mediate tumor response in the context of a KRAS(G12D) model, and improved tumor responses resulted when combined with mTOR inhibition. As a result, these genetically diverse models represent a valuable resource for preclinical efficacy and drug discovery studies.

Keywords: AZD8055; BEZ235; PD0325901; Targeted therapies; colorectal cancer; patient-derived xenograft; translational models

References

  1. Cancer Manag Res. 2013 Jun 11;5:103-15 - PubMed
  2. Leukemia. 2012 Jun;26(6):1195-202 - PubMed
  3. Lab Invest. 2013 Sep;93(9):970-82 - PubMed
  4. JAMA. 2010 Oct 27;304(16):1812-20 - PubMed
  5. Mol Cancer Ther. 2009 Aug;8(8):2204-10 - PubMed
  6. Cancer Res. 2010 Jan 1;70(1):288-98 - PubMed
  7. CA Cancer J Clin. 2014 Mar-Apr;64(2):104-17 - PubMed
  8. Annu Rev Cell Biol. 1991;7:601-32 - PubMed
  9. Nature. 2012 Mar 28;483(7391):531-3 - PubMed
  10. Cancer Res. 2006 Apr 15;66(8):3992-5 - PubMed
  11. Mol Cancer Ther. 2010 Jul;9(7):1968-76 - PubMed
  12. Cancer Biol Ther. 2002 Nov-Dec;1(6):599-606 - PubMed
  13. PLoS One. 2012;7(11):e48548 - PubMed
  14. J Cell Sci. 2005 Mar 1;118(Pt 5):843-6 - PubMed
  15. J Transl Med. 2012 Jun 18;10:125 - PubMed
  16. Clin Pharmacol Ther. 2009 Feb;85(2):217-21 - PubMed
  17. PLoS One. 2012;7(8):e44146 - PubMed
  18. Cancer Res. 2013 Sep 1;73(17):5315-9 - PubMed
  19. Cancer Res. 2008 Nov 15;68(22):9221-30 - PubMed
  20. Expert Opin Ther Targets. 2012 Jan;16(1):103-19 - PubMed
  21. Nat Rev Cancer. 2004 Dec;4(12):937-47 - PubMed
  22. Am J Pathol. 2007 Mar;170(3):793-804 - PubMed
  23. Cancer Res. 2009 Apr 15;69(8):3364-73 - PubMed
  24. J Clin Oncol. 2012 Oct 10;30(29):3570-7 - PubMed
  25. Nat Rev Drug Discov. 2004 Aug;3(8):711-5 - PubMed
  26. Mutat Res. 1988 May;195(3):255-71 - PubMed
  27. Nat Med. 2008 Dec;14(12):1351-6 - PubMed
  28. Clin Cancer Res. 2007 Dec 15;13(24):7264-70 - PubMed
  29. Annu Rev Pathol. 2011;6:479-507 - PubMed
  30. Liver Int. 2013 May;33(5):780-93 - PubMed
  31. Pediatr Blood Cancer. 2007 Dec;49(7):928-40 - PubMed
  32. Clin Cancer Res. 2009 Jul 15;15(14):4649-64 - PubMed
  33. Mol Cancer Ther. 2008 Jul;7(7):1851-63 - PubMed
  34. World J Gastroenterol. 2012 Oct 7;18(37):5171-80 - PubMed
  35. Small GTPases. 2012 Jan-Mar;3(1):34-9 - PubMed
  36. Nat Rev Cancer. 2012 Mar 22;12(4):278-87 - PubMed
  37. Nat Rev Mol Cell Biol. 2007 Oct;8(10):839-45 - PubMed
  38. Mol Cancer Ther. 2011 Aug;10(8):1440-9 - PubMed
  39. Ther Clin Risk Manag. 2008 Dec;4(6):1221-7 - PubMed
  40. Mol Cancer Ther. 2011 Aug;10(8):1311-6 - PubMed
  41. Br J Cancer. 2012 Apr 10;106(8):1386-94 - PubMed
  42. Cell. 2005 Apr 22;121(2):179-93 - PubMed
  43. Nat Rev Clin Oncol. 2013 Mar;10(3):143-53 - PubMed
  44. Oncotarget. 2012 Nov;3(11):1416-27 - PubMed
  45. Cancer Res. 2009 Mar 1;69(5):1951-7 - PubMed
  46. Pediatr Blood Cancer. 2012 Feb;58(2):191-9 - PubMed
  47. Hepatology. 2010 Apr;51(4):1218-25 - PubMed
  48. Clin Cancer Res. 2010 Jul 15;16(14):3628-38 - PubMed
  49. J Clin Oncol. 2008 Jan 20;26(3):374-9 - PubMed
  50. Clin Cancer Res. 2013 Nov 1;19(21):5940-51 - PubMed
  51. Nat Rev Clin Oncol. 2009 Jun;6(6):306-7 - PubMed
  52. J Urol. 2014 Jan;191(1):227-34 - PubMed
  53. Cancer Res. 2006 Apr 1;66(7):3351-4, discussion 3354 - PubMed
  54. Cancer Res. 2009 May 15;69(10):4286-93 - PubMed

Publication Types