Display options
Share it on

Epigenetics Chromatin. 2014 Nov 24;7(1):36. doi: 10.1186/1756-8935-7-36. eCollection 2014.

Predicting expression: the complementary power of histone modification and transcription factor binding data.

Epigenetics & chromatin

David M Budden, Daniel G Hurley, Joseph Cursons, John F Markham, Melissa J Davis, Edmund J Crampin

Affiliations

  1. Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia ; NICTA Victoria Research Laboratory, The University of Melbourne, 3010 Parkville, Australia.
  2. Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia.
  3. Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia ; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, 3010 Parkville, Australia.
  4. Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia ; NICTA Victoria Research Laboratory, The University of Melbourne, 3010 Parkville, Australia ; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, 3010 Parkville, Australia ; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, 3010 Parkville, Australia ; Department of Mathematics and Statistics, The University of Melbourne, 3010 Parkville, Australia ; School of Medicine, The University of Melbourne, 3010 Parkville, Australia.

PMID: 25489339 PMCID: PMC4258808 DOI: 10.1186/1756-8935-7-36

Abstract

BACKGROUND: Transcription factors (TFs) and histone modifications (HMs) play critical roles in gene expression by regulating mRNA transcription. Modelling frameworks have been developed to integrate high-throughput omics data, with the aim of elucidating the regulatory logic that results from the interactions of DNA, TFs and HMs. These models have yielded an unexpected and poorly understood result: that TFs and HMs are statistically redundant in explaining mRNA transcript abundance at a genome-wide level.

RESULTS: We constructed predictive models of gene expression by integrating RNA-sequencing, TF and HM chromatin immunoprecipitation sequencing and DNase I hypersensitivity data for two mammalian cell types. All models identified genome-wide statistical redundancy both within and between TFs and HMs, as previously reported. To investigate potential explanations, groups of genes were constructed for ontology-classified biological processes. Predictive models were constructed for each process to explore the distribution of statistical redundancy. We found significant variation in the predictive capacity of TFs and HMs across these processes and demonstrated the predictive power of HMs to be inversely proportional to process enrichment for housekeeping genes.

CONCLUSIONS: It is well established that the roles played by TFs and HMs are not functionally redundant. Instead, we attribute the statistical redundancy reported in this and previous genome-wide modelling studies to the heterogeneous distribution of HMs across chromatin domains. Furthermore, we conclude that statistical redundancy between individual TFs can be readily explained by nucleosome-mediated cooperative binding. This could possibly help the cell confer regulatory robustness by rejecting signalling noise and allowing control via multiple pathways.

Keywords: Gene expression; Histone modifications; Predictive modelling; Transcription factors; Transcriptional regulation

References

  1. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2926-31 - PubMed
  2. Biometrika. 1947;34(1-2):28-35 - PubMed
  3. Brief Bioinform. 2014 Mar;15(2):195-211 - PubMed
  4. Nat Rev Genet. 2006 Sep;7(9):703-13 - PubMed
  5. Genome Res. 2007 Nov;17(11):1550-61 - PubMed
  6. Nat Biotechnol. 2010 Oct;28(10):1057-68 - PubMed
  7. Nat Methods. 2008 Jul;5(7):613-9 - PubMed
  8. Nat Biotechnol. 2014 Feb;32(2):171-8 - PubMed
  9. Trends Genet. 2013 Oct;29(10):569-74 - PubMed
  10. Nat Methods. 2012 Jul 15;9(8):796-804 - PubMed
  11. Nat Cell Biol. 2006 Feb;8(2):188-94 - PubMed
  12. Nat Methods. 2008 Jul;5(7):621-8 - PubMed
  13. Brief Bioinform. 2015 Jul;16(4):616-28 - PubMed
  14. Nat Rev Genet. 2009 Sep;10(9):605-16 - PubMed
  15. Bioinformatics. 2009 Jun 15;25(12):i161-8 - PubMed
  16. Cell. 2008 Jun 13;133(6):1106-17 - PubMed
  17. Cell. 2002 Dec 13;111(6):771-8 - PubMed
  18. Genome Biol. 2011;12(2):R15 - PubMed
  19. Nat Biotechnol. 2010 May;28(5):511-5 - PubMed
  20. Bioinformatics. 2003 Jan 22;19(2):185-93 - PubMed
  21. Bioinformatics. 2012 Nov 1;28(21):2789-96 - PubMed
  22. Nucleic Acids Res. 2014 Jan;42(Database issue):D749-55 - PubMed
  23. Nature. 2007 May 24;447(7143):407-12 - PubMed
  24. Mol Cell Biol. 2006 Jul;26(13):5096-105 - PubMed
  25. Nature. 2012 Apr 11;485(7398):376-80 - PubMed
  26. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  27. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):15-22 - PubMed
  28. Nat Rev Genet. 2009 Apr;10 (4):252-63 - PubMed
  29. Cell. 1990 Mar 23;60(6):909-20 - PubMed
  30. Annu Rev Genomics Hum Genet. 2006;7:29-59 - PubMed
  31. Cell. 2007 Feb 23;128(4):693-705 - PubMed
  32. Nature. 2007 Aug 2;448(7153):553-60 - PubMed
  33. Nat Struct Mol Biol. 2008 Nov;15(11):1176-83 - PubMed
  34. Nat Rev Genet. 2013 Jun;14(6):390-403 - PubMed
  35. Nucleic Acids Res. 2012 Jan;40(2):553-68 - PubMed
  36. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21521-6 - PubMed
  37. Genome Biol. 2012 Oct 03;13(10):R85 - PubMed
  38. Cell. 2004 Jun 11;117(6):721-33 - PubMed
  39. Genome Res. 2010 Nov;20(11):1493-502 - PubMed
  40. J Cell Biol. 1979 Nov;83(2 Pt 1):403-27 - PubMed
  41. Nucleic Acids Res. 2012 Aug;40(14):6414-23 - PubMed
  42. Cell Stem Cell. 2013 Feb 7;12(2):180-92 - PubMed
  43. Nat Rev Genet. 2007 Nov;8(11):829-33 - PubMed
  44. Cell. 2007 Feb 23;128(4):669-81 - PubMed
  45. Genes Dev. 2013 Jun 15;27(12):1318-38 - PubMed
  46. Nat Biotechnol. 2010 Oct;28(10):1079-88 - PubMed
  47. PLoS Comput Biol. 2010 Sep 16;6(9):null - PubMed
  48. Nat Genet. 2000 May;25(1):25-9 - PubMed
  49. Proc Natl Acad Sci U S A. 2001 Aug 14;98 (17 ):9581-6 - PubMed
  50. Genome Res. 2007 Jun;17(6):807-17 - PubMed
  51. Cancer Cell. 2008 Nov 4;14(5):355-68 - PubMed
  52. Prog Biophys Mol Biol. 2004 Sep;86(1):45-76 - PubMed
  53. Cell. 2007 Feb 23;128(4):707-19 - PubMed
  54. Cell. 2009 Jun 26;137(7):1194-211 - PubMed
  55. Nature. 2008 Aug 7;454(7205):766-70 - PubMed

Publication Types