Display options
Share it on

Chem Sci. 2015 Feb;6(2):1237-1246. doi: 10.1039/C4SC01320D.

Rational Coupled Dynamics Network Manipulation Rescues Disease-Relevant Mutant Cystic Fibrosis Transmembrane Conductance Regulator.

Chemical science

Elizabeth A Proctor, Pradeep Kota, Andrei A Aleksandrov, Lihua He, John R Riordan, Nikolay V Dokholyan

Affiliations

  1. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA ; Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
  2. Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA ; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
  3. Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA ; Cystic Fibrosis Treatment and Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.
  4. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA ; Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA ; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA ; Cystic Fibrosis Treatment and Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.

PMID: 25685315 PMCID: PMC4324596 DOI: 10.1039/C4SC01320D

Abstract

Many cellular functions necessary for life are tightly regulated by protein allosteric conformational change, and correlated dynamics between protein regions has been found to contribute to the function of proteins not previously considered allosteric. The ability to map and control such dynamic coupling would thus create opportunities for the extension of current therapeutic design strategy. Here, we present an approach to determine the networks of residues involved in the transfer of correlated motion across a protein, and apply our approach to rescue disease-causative mutant cystic fibrosis transmembrane regulator (CFTR) ion channels, ΔF508 and ΔI507, which together constitute over 90% of cystic fibrosis cases. We show that these mutations perturb dynamic coupling within the first nucleotide-binding domain (NBD1), and uncover a critical residue that mediates trans-domain coupled dynamics. By rationally designing a mutation to this residue, we improve aberrant dynamics of mutant CFTR as well as enhance surface expression and function of both mutants, demonstrating the rescue of a disease mutation by rational correction of aberrant protein dynamics.

References

  1. Science. 1997 Jul 25;277(5325):556-8 - PubMed
  2. PLoS Comput Biol. 2006 Jul 7;2(7):e85 - PubMed
  3. J Mol Biol. 2006 Dec 1;364(3):337-51 - PubMed
  4. J Mol Biol. 2001 Sep 7;312(1):289-307 - PubMed
  5. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3256-61 - PubMed
  6. Science. 1991 Dec 20;254(5039):1797-9 - PubMed
  7. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5271-6 - PubMed
  8. Structure. 2008 Jul;16(7):1010-8 - PubMed
  9. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7664-9 - PubMed
  10. Science. 1989 Sep 8;245(4922):1066-73 - PubMed
  11. J Mol Biol. 2010 Feb 19;396(2):406-30 - PubMed
  12. J Mol Biol. 1995 Apr 28;248(2):478-86 - PubMed
  13. Nature. 1992 Aug 27;358(6389):761-4 - PubMed
  14. PLoS Comput Biol. 2014 Feb 06;10(2):e1003394 - PubMed
  15. Fold Des. 1998;3(6):577-87 - PubMed
  16. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14132-6 - PubMed
  17. Cell. 1993 Apr 23;73(2):335-46 - PubMed
  18. Am J Physiol. 1995 Jan;268(1 Pt 1):C243-51 - PubMed
  19. PLoS One. 2010 Nov 30;5(11):e15458 - PubMed
  20. Biophys J. 2007 Mar 1;92(5):1457-70 - PubMed
  21. Nat Struct Biol. 2003 Jan;10(1):59-69 - PubMed
  22. Proteins. 2011 Jan;79(1):261-70 - PubMed
  23. Protein Sci. 2010 Oct;19(10):1917-31 - PubMed
  24. Structure. 2007 Dec;15(12):1567-76 - PubMed
  25. J Physiol. 2006 Apr 15;572(Pt 2):347-58 - PubMed
  26. J Cell Biol. 2004 Oct 11;167(1):65-74 - PubMed
  27. J Biol Chem. 2008 Sep 26;283(39):26383-90 - PubMed
  28. Science. 2005 Jun 3;308(5727):1424-8 - PubMed
  29. Nat Struct Mol Biol. 2006 Sep;13(9):831-8 - PubMed
  30. Adv Exp Med Biol. 1991;290:393-8 - PubMed
  31. Proteins. 2004 Nov 15;57(3):433-43 - PubMed
  32. Proteins. 2013 May;81(5):884-95 - PubMed
  33. Nature. 2009 Nov 19;462(7271):368-72 - PubMed
  34. Nat Genet. 1993 Apr;3(4):311-6 - PubMed
  35. J Biol Chem. 2002 Jun 14;277(24):21111-4 - PubMed
  36. Nat Chem Biol. 2008 Aug;4(8):474-82 - PubMed
  37. Science. 1999 Oct 8;286(5438):295-9 - PubMed
  38. J Biol Chem. 1993 May 25;268(15):11304-11 - PubMed
  39. Nature. 2005 Sep 22;437(7058):512-8 - PubMed
  40. J Mol Biol. 2010 Aug 13;401(2):194-210 - PubMed
  41. Receptors Channels. 1996;4(1):63-72 - PubMed
  42. J Physiol. 2009 Jun 15;587(Pt 12):2875-86 - PubMed
  43. J Mol Biol. 2012 May 25;419(1-2):41-60 - PubMed
  44. Curr Opin Struct Biol. 2004 Dec;14(6):706-15 - PubMed
  45. Nat Methods. 2007 Jun;4(6):466-7 - PubMed
  46. Protein Sci. 2010 Oct;19(10):1932-47 - PubMed
  47. J Biol Chem. 2002 Sep 27;277(39):35896-905 - PubMed
  48. Cell. 1990 Nov 16;63(4):827-34 - PubMed

Publication Types

Grant support