Display options
Share it on

Evol Appl. 2014 Dec;7(10):1226-37. doi: 10.1111/eva.12218. Epub 2014 Oct 15.

Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia.

Evolutionary applications

Shawna A Foo, Symon A Dworjanyn, Mehar S Khatkar, Alistair G B Poore, Maria Byrne

Affiliations

  1. School of Medical Sciences, The University of Sydney and Sydney Institute of Marine Science Sydney, NSW, Australia.
  2. National Marine Science Centre, Southern Cross University Coffs Harbour, NSW, Australia.
  3. Faculty of Veterinary Science, The University of Sydney Sydney, NSW, Australia.
  4. Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia.
  5. Schools of Medical and Biological Sciences, The University of Sydney Sydney, NSW, Australia.

PMID: 25558283 PMCID: PMC4275094 DOI: 10.1111/eva.12218

Abstract

To predict the effects of global change on marine populations, it is important to measure the effects of climate stressors on performance and potential for adaptation. Adaptation depends on heritable genetic variance for stress tolerance being present in populations. We determined the effects of near-future ocean conditions on fertilization success of the sea urchin Pseudoboletia indiana. In 16 multiple dam-sire crosses, we quantified genetic variation in tolerance of warming (+3°C) and acidification (-0.3 to 0.5 pH units) at the gastrulation stage. Ocean acidification decreased fertilization across all dam-sire combinations with effects of pH significantly differing among the pairings. Decreased pH reduced the percentage of normal gastrulae with negative effects alleviated by increased temperature. Significant sire by environment interactions indicated the presence of heritable variation in tolerance of stressors at gastrulation and thus the potential for selection of resistant genotypes, which may enhance population persistence. A low genetic correlation indicated that genotypes that performed well at gastrulation in low pH did not necessarily perform well at higher temperatures. Furthermore, performance at fertilization was not necessarily a good predictor of performance at the later stage of gastrulation. Southern range edge populations of Pseudoboletia indiana may benefit from future warming with potential for extension of their distribution in south-east Australia.

Keywords: North Carolina II; climate change; ocean acidification; quantitative genetics; sea urchin

References

  1. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12632-7 - PubMed
  2. Genetics. 2004 Jul;167(3):1281-91 - PubMed
  3. Philos Trans R Soc Lond B Biol Sci. 2004 Jun 29;359(1446):873-90 - PubMed
  4. Nature. 2004 Aug 19;430(7002):881-4 - PubMed
  5. Am Nat. 2004 Oct;164(4):531-42 - PubMed
  6. Science. 2005 Jun 24;308(5730):1912-5 - PubMed
  7. Science. 2006 Apr 14;312(5771):267-9 - PubMed
  8. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1745-50 - PubMed
  9. Adv Mar Biol. 2007;53:1-60 - PubMed
  10. Trends Ecol Evol. 2007 Nov;22(11):575-82 - PubMed
  11. Mol Ecol. 2008 Jan;17(1):167-78 - PubMed
  12. Proc Biol Sci. 2008 Mar 22;275(1635):649-59 - PubMed
  13. Biol Bull. 2008 Oct;215(2):191-9 - PubMed
  14. Development. 2009 Sep;136(18):3033-42 - PubMed
  15. PLoS Biol. 2010 Apr 27;8(4):e1000357 - PubMed
  16. Trends Ecol Evol. 1991 Aug;6(8):246-9 - PubMed
  17. Trends Ecol Evol. 1995 May;10(5):212-7 - PubMed
  18. Nature. 2011 Feb 24;470(7335):479-85 - PubMed
  19. Proc Biol Sci. 2012 Jan 22;279(1727):349-56 - PubMed
  20. PLoS One. 2011;6(8):e22881 - PubMed
  21. Curr Biol. 2011 Nov 8;21(21):1828-32 - PubMed
  22. Mar Environ Res. 2012 May;76:3-15 - PubMed
  23. Mol Ecol. 2012 Mar;21(6):1311-29 - PubMed
  24. Ann Rev Mar Sci. 2012;4:11-37 - PubMed
  25. Evolution. 2012 Jun;66(6):1695-708 - PubMed
  26. PLoS One. 2012;7(8):e42497 - PubMed
  27. PLoS One. 2012;7(11):e49167 - PubMed
  28. PLoS One. 2012;7(12):e53118 - PubMed
  29. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6937-42 - PubMed
  30. Glob Chang Biol. 2013 Aug;19(8):2536-46 - PubMed
  31. Integr Comp Biol. 2013 Oct;53(4):582-96 - PubMed
  32. Biol Bull. 2013 Aug;224(3):166-83 - PubMed
  33. Ecol Lett. 2013 Dec;16(12):1488-500 - PubMed
  34. Theor Appl Genet. 1983 Nov;67(1):75-86 - PubMed
  35. Environ Sci Technol. 2014;48(1):713-22 - PubMed
  36. Trends Ecol Evol. 2014 Feb;29(2):117-25 - PubMed
  37. Ecology. 2013 Nov;94(11):2575-82 - PubMed
  38. Evol Appl. 2012 Feb;5(2):192-201 - PubMed
  39. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2456-60 - PubMed
  40. J Phycol. 2013 Aug;49(4):630-9 - PubMed

Publication Types