Display options
Share it on

J Clin Imaging Sci. 2014 Nov 29;4:63. doi: 10.4103/2156-7514.145860. eCollection 2014.

Blood Pool Contrast-enhanced Magnetic Resonance Angiography with Correlation to Digital Subtraction Angiography: A Pictorial Review.

Journal of clinical imaging science

Martha-Grace Knuttinen, Jillian Karow, Winnie Mar, Margaret Golden, Karen L Xie

Affiliations

  1. Department of Radiology, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States.

PMID: 25558430 PMCID: PMC4278092 DOI: 10.4103/2156-7514.145860

Abstract

Magnetic resonance angiography (MRA) provides noninvasive visualization of the vascular supply of soft tissue masses and vascular pathology, without harmful radiation. This is important for planning an endovascular intervention, and helps to evaluate the efficiency and effectiveness of the treatment. MRA with conventional extracellular contrast agents relies on accurate contrast bolus timing, limiting the imaging window to first-pass arterial phase. The recently introduced blood pool contrast agent (BPCA), gadofosveset trisodium, reversibly binds to human serum albumin, resulting in increased T1 relaxivity and prolonged intravascular retention time, permitting both first-pass and steady-state phase high-resolution imaging. In our practice, high-quality MRA serves as a detailed "roadmap" for the needed endovascular intervention. Cases of aortoiliac occlusive disease, inferior vena cava thrombus, pelvic congestion syndrome, and lower extremity arteriovenous malformation are discussed in this article. MRA was acquired at 1.5 T with an 8-channel phased array coil after intravenous administration of gadofosveset (0.03 mmol/kg body weight), at the first-pass phase. In the steady-state, serial T1-weighted 3D spoiled gradient echo images were obtained with high resolution. All patients underwent digital subtraction angiography (DSA) and endovascular treatment. MRA and DSA findings of vascular anatomy and pathology are discussed and correlated. BPCA-enhanced MRA provides high-quality first-pass and steady-state vascular imaging. This could increase the diagnostic accuracy and create a detailed map for pre-intervention planning. Understanding the pharmacokinetics of BPCA and being familiar with the indications and technique of MRA are important for diagnosis and endovascular intervention.

Keywords: Interventional radiology; pre-procedural planning; vascular

References

  1. Radiology. 2005 Sep;236(3):825-33 - PubMed
  2. J Magn Reson Imaging. 2012 Jan;35(1):1-19 - PubMed
  3. AJR Am J Roentgenol. 2009 Nov;193(5):W458-63 - PubMed
  4. Radiology. 2008 Nov;249(2):701-11 - PubMed
  5. Eur Radiol. 2011 Feb;21(2):318-25 - PubMed
  6. Cardiovasc Intervent Radiol. 2009 May;32(3):397-405 - PubMed
  7. Ann Intern Med. 2010 Sep 7;153(5):325-34 - PubMed
  8. Vasc Health Risk Manag. 2008;4(1):1-9 - PubMed
  9. AJR Am J Roentgenol. 2008 Jan;190(1):179-86 - PubMed
  10. J Vasc Surg. 2000 Jan;31(1 Pt 2):S1-S296 - PubMed
  11. J Magn Reson Imaging. 2009 Dec;30(6):1259-67 - PubMed
  12. AJR Am J Roentgenol. 2013 Jun;200(6):1378-86 - PubMed
  13. Eur J Radiol. 2008 May;66(2):160-7 - PubMed
  14. Eur J Radiol. 2008 Feb;65(2):316-25 - PubMed

Publication Types