Display options
Share it on

Front Psychol. 2015 Jan 22;5:1590. doi: 10.3389/fpsyg.2014.01590. eCollection 2014.

On the relationship between persistent delay activity, repetition enhancement and priming.

Frontiers in psychology

Elisa M Tartaglia, Gianluigi Mongillo, Nicolas Brunel

Affiliations

  1. Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia Rovereto, Italy ; Departments of Statistics and Neurobiology, University of Chicago Chicago, IL, USA.
  2. Centre de Neurophysique, Physiologie, Pathologie, Université Paris Descartes Paris, France ; Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 8119 Paris, France.
  3. Departments of Statistics and Neurobiology, University of Chicago Chicago, IL, USA.

PMID: 25657630 PMCID: PMC4302793 DOI: 10.3389/fpsyg.2014.01590

Abstract

Human efficiency in processing incoming stimuli (in terms of speed and/or accuracy) is typically enhanced by previous exposure to the same, or closely related stimuli-a phenomenon referred to as priming. In spite of the large body of knowledge accumulated in behavioral studies about the conditions conducive to priming, and its relationship with other forms of memory, the underlying neuronal correlates of priming are still under debate. The idea has repeatedly been advanced that a major neuronal mechanism supporting behaviorally-expressed priming is repetition suppression, a widespread reduction of spiking activity upon stimulus repetition which has been routinely exposed by single-unit recordings in non-human primates performing delayed-response, as well as passive fixation tasks. This proposal is mainly motivated by the observation that, in human fMRI studies, priming is associated to a significant reduction of the BOLD signal (widely interpreted as a proxy of the level of spiking activity) upon stimulus repetition. Here, we critically re-examine a large part of the electrophysiological literature on repetition suppression in non-human primates and find that repetition suppression is systematically accompanied by stimulus-selective delay period activity, together with repetition enhancement, an increase of spiking activity upon stimulus repetition in small neuronal populations. We argue that repetition enhancement constitutes a more viable candidate for a putative neuronal substrate of priming, and propose a minimal framework that links together, mechanistically and functionally, repetition suppression, stimulus-selective delay activity and repetition enhancement.

Keywords: neural network modeling; priming; repetition enhancement; repetition suppression; short-term memory

References

  1. Eur J Pharmacol. 1992 Aug 25;219(2):245-51 - PubMed
  2. J Neurophysiol. 1993 Jun;69(6):1918-29 - PubMed
  3. Trends Neurosci. 2001 Aug;24(8):455-63 - PubMed
  4. Brain Res Cogn Brain Res. 2002 May;13(3):377-92 - PubMed
  5. Can J Exp Psychol. 2010 Dec;64(4):241-55 - PubMed
  6. Neuron. 2004 Jun 10;42(5):817-29 - PubMed
  7. J Neurosci. 1999 Jul 1;19(13):5493-505 - PubMed
  8. Hum Brain Mapp. 2006 Jan;27(1):37-46 - PubMed
  9. Cogn Behav Neurol. 2008 Sep;21(3):134-7 - PubMed
  10. Exp Brain Res. 1993;96(3):457-72 - PubMed
  11. Cogn Psychol. 1991 Jul;23(3):393-419 - PubMed
  12. J Exp Psychol Learn Mem Cogn. 1997 Sep;23(5):1059-82 - PubMed
  13. J Neurosci. 2008 Jan 2;28(1):239-48 - PubMed
  14. J Neurosci. 1993 Apr;13(4):1460-78 - PubMed
  15. Nature. 1995 Aug 17;376(6541):572-5 - PubMed
  16. J Neurophysiol. 2011 Sep;106(3):1260-73 - PubMed
  17. Mem Cognit. 1992 Jul;20(4):441-8 - PubMed
  18. Mem Cognit. 1991 Jan;19(1):37-43 - PubMed
  19. Nature. 1991 Nov 14;354(6349):152-5 - PubMed
  20. J Neurosci. 2012 May 2;32(18):6161-9 - PubMed
  21. Prog Neurobiol. 2013 Apr;103:156-93 - PubMed
  22. Exp Brain Res. 1987;65(3):614-22 - PubMed
  23. Trends Cogn Sci. 2004 Oct;8(10):457-64 - PubMed
  24. PLoS Comput Biol. 2015 Feb 19;11(2):e1004059 - PubMed
  25. J Neurosci. 2003 Jun 15;23(12):5235-46 - PubMed
  26. Vis Neurosci. 1991 Oct;7(4):357-62 - PubMed
  27. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6275-80 - PubMed
  28. J Neurophysiol. 2007 Jan;97(1):307-19 - PubMed
  29. J Neurosci. 1995 Sep;15(9):5870-8 - PubMed
  30. Neural Comput. 2010 May;22(5):1312-32 - PubMed
  31. Neuron. 2006 Mar 16;49(6):917-27 - PubMed
  32. Cogn Neurosci. 2012;3(3-4):227-237 - PubMed
  33. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5640-5 - PubMed
  34. J Exp Psychol Learn Mem Cogn. 1995 Jul;21(4):1019-36 - PubMed
  35. Neuron. 2000 Jul;27(1):179-89 - PubMed
  36. J Neurophysiol. 1994 Aug;72(2):1020-3 - PubMed
  37. Curr Biol. 2000 Oct 19;10(20):R753-6 - PubMed
  38. J Exp Psychol Learn Mem Cogn. 1992 Jan;18(1):43-57 - PubMed
  39. Cereb Cortex. 2007 Sep;17 Suppl 1:i70-6 - PubMed
  40. Cereb Cortex. 1994 Sep-Oct;4(5):523-31 - PubMed
  41. J Neurosci. 1989 Jun;9(6):1835-45 - PubMed
  42. Neuron. 1998 Feb;20(2):185-95 - PubMed
  43. J Neurosci. 1991 Jun;11(6):1763-79 - PubMed
  44. J Neurosci. 2005 Mar 30;25(13):3414-22 - PubMed
  45. Neuron. 2004 Sep 2;43(5):745-57 - PubMed
  46. J Neurophysiol. 1998 Jul;80(1):324-30 - PubMed
  47. J Vis. 2010 Jan 27;10(1):12.1-16 - PubMed
  48. Neuron. 2006 Jan 19;49(2):307-18 - PubMed
  49. J Cogn Neurosci. 2009 Dec;21(12):2300-19 - PubMed
  50. Psychol Rev. 1992 Apr;99(2):195-231 - PubMed
  51. Prog Neurobiol. 2003 May;70(1):53-81 - PubMed
  52. Nature. 1995 Aug 17;376(6541):587-90 - PubMed
  53. J Neurosci. 1999 Dec 1;19(23):10404-16 - PubMed
  54. J Neurophysiol. 2007 May;97(5):3532-43 - PubMed
  55. Neuropharmacology. 1998 Apr-May;37(4-5):657-76 - PubMed
  56. Annu Rev Neurosci. 1993;16:159-82 - PubMed
  57. J Neurosci. 2001 Sep 1;21(17):6846-52 - PubMed
  58. Psychol Sci. 2006 Nov;17(11):925-9 - PubMed
  59. J Neurophysiol. 2009 Jan;101(1):418-36 - PubMed
  60. Curr Opin Neurobiol. 2007 Apr;17(2):171-6 - PubMed
  61. Cogn Affect Behav Neurosci. 2007 Jun;7(2):120-9 - PubMed
  62. Nat Rev Neurosci. 2003 Mar;4(3):193-202 - PubMed
  63. Science. 1991 Nov 29;254(5036):1377-9 - PubMed
  64. J Neurosci. 2009 Apr 29;29(17):5494-507 - PubMed
  65. Psychopharmacology (Berl). 2002 Dec;165(1):43-50 - PubMed
  66. Psychopharmacology (Berl). 1994 Jul;115(3):350-7 - PubMed
  67. Behav Brain Res. 1996 Apr;76(1-2):191-7 - PubMed
  68. Trends Cogn Sci. 2006 Jan;10(1):14-23 - PubMed
  69. Cogn Neurosci. 2012;3(3-4):243-4 - PubMed
  70. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13494-9 - PubMed
  71. Brain Res Cogn Brain Res. 1995 Dec;3(1):17-24 - PubMed
  72. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2664-9 - PubMed
  73. Psychopharmacology (Berl). 1999 Dec;147(3):266-73 - PubMed
  74. Neuroreport. 1996 Nov 4;7(15-17):2757-60 - PubMed
  75. Psychol Aging. 1994 Dec;9(4):539-53 - PubMed
  76. J Neurosci. 1996 Aug 15;16(16):5154-67 - PubMed
  77. Mem Cognit. 1998 Jan;26(1):40-60 - PubMed
  78. Vis Neurosci. 1995 Mar-Apr;12(2):207-14 - PubMed
  79. Front Neurosci. 2013 Feb 26;7:18 - PubMed
  80. Nature. 1997 Oct 9;389(6651):596-9 - PubMed
  81. Cereb Cortex. 2001 Jul;11(7):592-7 - PubMed
  82. Curr Opin Neurobiol. 1998 Apr;8(2):227-33 - PubMed
  83. Nat Neurosci. 2000 Dec;3(12):1329-34 - PubMed
  84. Q J Exp Psychol A. 1989 Nov;41(4):775-96 - PubMed
  85. Cereb Cortex. 2005 Jan;15(1):109-16 - PubMed
  86. J Int Neuropsychol Soc. 1999 Mar;5(3):175-90 - PubMed
  87. J Clin Exp Neuropsychol. 1997 Apr;19(2):235-44 - PubMed
  88. Science. 2000 Feb 18;287(5456):1269-72 - PubMed
  89. Neuron. 2012 Apr 12;74(1):193-205 - PubMed
  90. Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3626-31 - PubMed
  91. Science. 1994 Jan 28;263(5146):520-2 - PubMed
  92. Eur J Neurosci. 2003 Oct;18(7):2011-24 - PubMed

Publication Types