Display options
Share it on

Nat Commun. 2015 Jan 13;6:5983. doi: 10.1038/ncomms6983.

Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction.

Nature communications

Qingquan Qin, Sheng Yin, Guangming Cheng, Xiaoyan Li, Tzu-Hsuan Chang, Gunther Richter, Yong Zhu, Huajian Gao

Affiliations

  1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.
  2. School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
  3. Centre of Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
  4. Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70589 Stuttgart, Germany.

PMID: 25585295 PMCID: PMC4308715 DOI: 10.1038/ncomms6983

Abstract

There has been relatively little study on time-dependent mechanical properties of nanowires, in spite of their importance for the design, fabrication and operation of nanoscale devices. Here we report a dislocation-mediated, time-dependent and fully reversible plastic behaviour in penta-twinned silver nanowires. In situ tensile experiments inside scanning and transmission electron microscopes show that penta-twinned silver nanowires undergo stress relaxation on loading and complete plastic strain recovery on unloading, while the same experiments on single-crystalline silver nanowires do not exhibit such a behaviour. Molecular dynamics simulations reveal that the observed behaviour in penta-twinned nanowires originates from the surface nucleation, propagation and retraction of partial dislocations. More specifically, vacancies reduce dislocation nucleation barrier, facilitating stress relaxation, while the twin boundaries and their intrinsic stress field promote retraction of partial dislocations, resulting in full strain recovery.

References

  1. Nat Mater. 2004 Jun;3(6):399-403 - PubMed
  2. Phys Rev Lett. 2005 Dec 16;95(25):255504 - PubMed
  3. Nat Commun. 2013;4:1742 - PubMed
  4. Nano Lett. 2013 Jul 10;13(7):3169-72 - PubMed
  5. Nat Commun. 2010;1:144 - PubMed
  6. Nano Lett. 2009 Aug;9(8):3048-52 - PubMed
  7. Acc Chem Res. 2007 Oct;40(10):1067-76 - PubMed
  8. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16108-13 - PubMed
  9. Nat Mater. 2002 Sep;1(1):45-8 - PubMed
  10. Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14503-8 - PubMed
  11. Nano Lett. 2012 Aug 8;12(8):4045-9 - PubMed
  12. Nat Nanotechnol. 2010 Mar;5(3):218-24 - PubMed
  13. Small. 2012 Oct 8;8(19):2986-93 - PubMed
  14. Phys Rev Lett. 2008 Jan 18;100(2):025502 - PubMed
  15. Science. 2007 Mar 30;315(5820):1831-4 - PubMed
  16. Nat Mater. 2003 Oct;2(10):656-60 - PubMed
  17. Nat Nanotechnol. 2012 Sep;7(9):594-601 - PubMed

Publication Types