Display options
Share it on

J Am Chem Soc. 2015 Feb 11;137(5):1862-74. doi: 10.1021/ja510862c. Epub 2015 Jan 29.

Atomistic description of thiostannate-capped CdSe nanocrystals: retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry.

Journal of the American Chemical Society

Loredana Protesescu, Maarten Nachtegaal, Oleksandr Voznyy, Olga Borovinskaya, Aaron J Rossini, Lyndon Emsley, Christophe Copéret, Detlef Günther, Edward H Sargent, Maksym V Kovalenko

Affiliations

  1. Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1, Zurich CH-8093, Switzerland.

PMID: 25597625 PMCID: PMC4525771 DOI: 10.1021/ja510862c

Abstract

Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution (1)H NMR spectroscopy, solution and solid-state (119)Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S7(6-) ligand as an example). Thiostannates SnS4(4-) and Sn2S7(6-) retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S6(4-) (and SnS3(2-)) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings.

References

  1. J Chem Phys. 2007 Sep 21;127(11):114105 - PubMed
  2. J Am Chem Soc. 2012 Mar 21;134(11):5010-3 - PubMed
  3. Science. 2009 Jun 12;324(5933):1417-20 - PubMed
  4. J Am Chem Soc. 2005 Mar 23;127(11):3910-20 - PubMed
  5. Nat Nanotechnol. 2012 Sep;7(9):577-82 - PubMed
  6. J Am Chem Soc. 2012 Feb 8;134(5):2457-60 - PubMed
  7. Nano Lett. 2011 Nov 9;11(11):4764-7 - PubMed
  8. ACS Nano. 2012 Sep 25;6(9):8448-55 - PubMed
  9. Nature. 2005 Sep 29;437(7059):664-70 - PubMed
  10. J Am Chem Soc. 2013 May 8;135(18):6915-20 - PubMed
  11. J Am Chem Soc. 2010 May 19;132(19):6686-95 - PubMed
  12. Nano Lett. 2014 Feb 12;14(2):653-62 - PubMed
  13. Nano Lett. 2011 Jul 13;11(7):2786-90 - PubMed
  14. J Am Chem Soc. 2012 Nov 7;134(44):18366-73 - PubMed
  15. J Am Chem Soc. 2011 Jul 13;133(27):10612-20 - PubMed
  16. Angew Chem Int Ed Engl. 2008;47(45):8638-41 - PubMed
  17. J Am Chem Soc. 2013 Mar 20;135(11):4199-202 - PubMed
  18. Phys Rev Lett. 2014 Apr 18;112(15):157401 - PubMed
  19. J Am Chem Soc. 2009 Mar 4;131(8):3024-32 - PubMed
  20. Solid State Nucl Magn Reson. 1996 Nov;7(2):141-6 - PubMed
  21. ACS Nano. 2013 Mar 26;7(3):2413-21 - PubMed
  22. Nat Commun. 2014 May 06;5:3803 - PubMed
  23. Phys Rev B Condens Matter. 1995 Jul 15;52(4):2995-3009 - PubMed
  24. J Am Chem Soc. 2011 Oct 5;133(39):15753-61 - PubMed
  25. J Am Chem Soc. 2014 Nov 5;136(44):15702-10 - PubMed
  26. ACS Nano. 2014 Oct 28;8(10):10321-7 - PubMed
  27. Nano Lett. 2007 Aug;7(8):2196-200 - PubMed
  28. J Am Chem Soc. 2010 Mar 17;132(10):3344-54 - PubMed
  29. J Synchrotron Radiat. 2005 Jul;12(Pt 4):537-41 - PubMed
  30. J Am Chem Soc. 2014 May 7;136(18):6550-3 - PubMed
  31. J Am Chem Soc. 2012 Dec 12;134(49):20160-8 - PubMed
  32. Nano Lett. 2014 Mar 12;14(3):1559-66 - PubMed
  33. Nano Lett. 2008 Aug;8(8):2283-8 - PubMed
  34. Chemistry. 2009;15(21):5230-44 - PubMed
  35. Nat Nanotechnol. 2009 Jan;4(1):40-4 - PubMed
  36. Chem Rev. 2014 Jan 8;114(1):863-82 - PubMed
  37. Nano Lett. 2011 Jul 13;11(7):2841-4 - PubMed
  38. J Am Chem Soc. 2013 Jan 30;135(4):1349-57 - PubMed
  39. J Phys Chem Lett. 2012 May 3;3(9):1169-75 - PubMed
  40. J Am Chem Soc. 2005 May 25;127(20):7587-93 - PubMed
  41. J Am Chem Soc. 2004 Jun 9;126(22):7063-70 - PubMed
  42. Nano Lett. 2012 May 9;12(5):2631-8 - PubMed
  43. J Am Chem Soc. 2013 Dec 11;135(49):18536-48 - PubMed
  44. J Am Chem Soc. 2012 Aug 22;134(33):13604-15 - PubMed
  45. ACS Nano. 2014 Jul 22;8(7):7359-69 - PubMed
  46. Nat Mater. 2014 Aug;13(8):822-8 - PubMed
  47. ACS Nano. 2014 Dec 23;8(12):12883-94 - PubMed
  48. J Am Chem Soc. 2008 Sep 17;130(37):12279-81 - PubMed
  49. Adv Mater. 2012 Jan 3;24(1):99-103 - PubMed
  50. J Am Chem Soc. 2011 Nov 2;133(43):17504-12 - PubMed
  51. Nat Nanotechnol. 2011 Apr 24;6(6):348-52 - PubMed
  52. Science. 2005 Oct 21;310(5747):462-5 - PubMed
  53. Nat Nanotechnol. 2014 Apr;9(4):300-5 - PubMed
  54. Adv Mater. 2014 Feb 12;26(6):937-42 - PubMed
  55. Chem Rev. 2010 Jan;110(1):389-458 - PubMed
  56. Adv Mater. 2012 Dec 11;24(47):6295-9 - PubMed
  57. Phys Rev Lett. 2004 May 28;92(21):217401 - PubMed
  58. Nano Lett. 2012 Apr 11;12(4):1813-20 - PubMed
  59. Nat Commun. 2012;3:1216 - PubMed
  60. Inorg Chem. 2009 May 4;48(9):4219-30 - PubMed
  61. Nat Mater. 2014 Aug;13(8):796-801 - PubMed
  62. J Am Chem Soc. 2003 Oct 15;125(41):12567-75 - PubMed
  63. Chem Soc Rev. 2008 Mar;37(3):518-26 - PubMed
  64. Angew Chem Int Ed Engl. 2012 Jan 16;51(3):684-9 - PubMed
  65. Nature. 2013 Aug 15;500(7462):323-6 - PubMed
  66. Nat Mater. 2011 Oct;10(10):765-71 - PubMed
  67. J Am Chem Soc. 2010 Jul 28;132(29):10085-92 - PubMed

Publication Types

Grant support