Display options
Share it on

Biosensors (Basel). 2012 Nov 13;2(4):448-64. doi: 10.3390/bios2040448.

Evaluating Inhibition of the Epidermal Growth Factor (EGF)-Induced Response of Mutant MCF10A Cells with an Acoustic Sensor.

Biosensors

Marcela P Garcia, Ammar Shahid, Jennifer Y Chen, Jun Xi

Affiliations

  1. Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA. [email protected].
  2. Department of Biology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA. [email protected].
  3. Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA. [email protected].
  4. Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA. [email protected].

PMID: 25586035 PMCID: PMC4263556 DOI: 10.3390/bios2040448

Abstract

Many cancer treatments rely on inhibition of epidermal growth factor (EGF)-induced cellular responses. Evaluating drug effects on such responses becomes critical to the development of new cancer therapeutics. In this report, we have employed a label-free acoustic sensor, the quartz crystal microbalance with dissipation monitoring (QCM-D), to track the EGF-induced response of mutant MCF10A cells under various inhibitory conditions. We have identified a complex cell de-adhesion process, which can be distinctly altered by inhibitors of signaling pathways and cytoskeleton formation in a dose-dependent manner. The dose dependencies of the inhibitors provide IC50 values which are in strong agreement with the values reported in the literature, demonstrating the sensitivity and reliability of the QCM-D as a screening tool. Using immunofluorescence imaging, we have also verified the quantitative relationship between the ΔD-response (change in energy dissipation factor) and the level of focal adhesions quantified with the areal density of immunostained vinculin under those inhibitory conditions. Such a correlation suggests that the dynamic restructuring of focal adhesions can be assessed based on the time-dependent change in ΔD-response. Overall, this report has shown that the QCM-D has the potential to become an effective sensing platform for screening therapeutic agents that target signaling and cytoskeletal proteins.

References

  1. Bioorg Med Chem. 2000 Apr;8(4):699-706 - PubMed
  2. J Immunol Methods. 2000 May 26;239(1-2):109-19 - PubMed
  3. Cell. 2000 Oct 13;103(2):193-200 - PubMed
  4. J Cell Sci. 2001 Mar;114(Pt 5):1025-36 - PubMed
  5. Nat Cell Biol. 2001 May;3(5):466-72 - PubMed
  6. J Cell Biol. 2001 May 14;153(4):881-8 - PubMed
  7. Curr Opin Chem Biol. 2001 Oct;5(5):572-7 - PubMed
  8. Wound Repair Regen. 2002 Jan-Feb;10(1):67-76 - PubMed
  9. Acta Oncol. 2002;41(2):124-30 - PubMed
  10. Oncologist. 2002;7 Suppl 4:31-9 - PubMed
  11. Cell. 2002 Sep 20;110(6):673-87 - PubMed
  12. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9 - PubMed
  13. Nat Cell Biol. 2003 Aug;5(8):733-40 - PubMed
  14. Leukemia. 2003 Sep;17(9):1765-82 - PubMed
  15. Annu Rev Cell Dev Biol. 2003;19:207-35 - PubMed
  16. ASAIO J. 1992 Jul-Sep;38(3):M171-3 - PubMed
  17. Apoptosis. 2004 Nov;9(6):667-76 - PubMed
  18. Nat Biotechnol. 2005 Mar;23(3):329-36 - PubMed
  19. Eur J Cancer. 2005 Jul;41(10):1383-92 - PubMed
  20. Curr Opin Pharmacol. 2005 Aug;5(4):350-6 - PubMed
  21. Mol Biol Cell. 2005 Sep;16(9):4329-40 - PubMed
  22. Appl Biochem Biotechnol. 2005 Aug;126(2):79-92 - PubMed
  23. Anal Chem. 2005 Sep 1;77(17):5720-5 - PubMed
  24. Gene. 2006 Jan 17;366(1):2-16 - PubMed
  25. Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76 - PubMed
  26. Mol Syst Biol. 2005;1:2005.0010 - PubMed
  27. Biophys J. 2006 Sep 1;91(5):1925-40 - PubMed
  28. J Biomol Screen. 2006 Sep;11(6):634-43 - PubMed
  29. Biochim Biophys Acta. 2006 Aug;1766(1):120-39 - PubMed
  30. Semin Oncol. 2006 Aug;33(4):392-406 - PubMed
  31. Clin Cancer Res. 2006 Sep 15;12(18):5268-72 - PubMed
  32. Assay Drug Dev Technol. 2006 Oct;4(5):583-95 - PubMed
  33. Drug Discov Today. 2006 Dec;11(23-24):1061-7 - PubMed
  34. Drug Discov Today. 2006 Dec;11(23-24):1068-74 - PubMed
  35. Cell Signal. 2007 Oct;19(10):2013-23 - PubMed
  36. FEBS Lett. 2008 Jun 18;582(14):2120-7 - PubMed
  37. Biotechnol J. 2008 Apr;3(4):484-95 - PubMed
  38. Biol Cell. 2009 Jan;101(1):13-29 - PubMed
  39. J Biomol Tech. 2008 Jul;19(3):151-8 - PubMed
  40. Curr Opin Pharmacol. 2009 Oct;9(5):643-9 - PubMed
  41. Cancer Res. 2010 Mar 15;70(6):2146-57 - PubMed
  42. Cell. 2010 Jun 25;141(7):1117-34 - PubMed
  43. Nat Biotechnol. 2010 Sep;28(9):943-9 - PubMed
  44. Drug Discov Today Technol. 2011;7(1):e5-e11 - PubMed
  45. Anal Chem. 2011 Apr 15;83(8):3141-6 - PubMed
  46. Cell Mol Life Sci. 2012 Feb;69(3):357-71 - PubMed
  47. Exp Cell Res. 2012 Mar 10;318(5):521-6 - PubMed
  48. Biosens Bioelectron. 2012 Oct-Dec;38(1):375-81 - PubMed
  49. Anal Bioanal Chem. 2013 Feb;405(4):1153-8 - PubMed
  50. J Pharmacol Exp Ther. 1990 May;253(2):688-97 - PubMed
  51. Sensors (Basel). 2007 Oct 16;7(10):2316-2329 - PubMed
  52. Annu Rev Biochem. 1987;56:881-914 - PubMed
  53. J Cell Biol. 1982 Jan;92(1):79-91 - PubMed
  54. Biotechnol Prog. 1993 Jan-Feb;9(1):105-8 - PubMed
  55. Cytometry. 1995 Apr 1;19(4):366-9 - PubMed
  56. J Biol Chem. 1994 Feb 18;269(7):5241-8 - PubMed
  57. Nature. 1993 Dec 9;366(6455):591-2 - PubMed
  58. Anal Chem. 1993 Dec 1;65(23):3378-81 - PubMed
  59. J Med Chem. 1996 Apr 26;39(9):1823-35 - PubMed
  60. Eur Biophys J. 1996;25(2):93-103 - PubMed
  61. Biochem Pharmacol. 1997 Oct 15;54(8):877-87 - PubMed
  62. J Cell Sci. 1998 Mar;111 ( Pt 5):615-24 - PubMed
  63. Faraday Discuss. 1997;(107):229-46 - PubMed
  64. Physiol Rev. 1998 Jul;78(3):763-81 - PubMed
  65. Eur Biophys J. 1999;28(1):26-37 - PubMed

Publication Types